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Intro and Motivation



Intro and Motivation

• Word embeddings and Deep neural networks perform great
• They do not have any explicit knowledge of linguistic abstractions
• How do they work? What emergent abstractions can we observe in them? How can we

interpret them?
• Are the emergent structures and abstractions similar to classical linguistic structures

and abstractions?
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LSD project

Linguistic Structure representation in Deep networks
• National Science Foundation of Czech Republic
• 2018 – 2020

Goals:
• Word embeddings and DNNs perform great.
• They do not have any explicit knowledge linguistic abstractions.
• How do they work? What abstractions can we observe in them? How do we interpret

them?
• Are the emergent structures similar to classical linguistic structures?
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LSD team

David Mareček Jindřich Libovický Rudolf Rosa Tomáš Musil
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Selected LSD results

Inspecting Word Embeddings using Principal Component Analysis (Musil, 2019)
• What features are important for word embeddings of various NLP tasks?

Derivational Morphological Relations in Word Embeddings (Musil et al., 2019)
• Unsupervised clustering of word-embedding differences captures derivational relations.

Neural Networks as Explicit Word-Based Rules (Libovický, 2019)
• We interpret a convolutional network for sentiment classification as word-based rules.

Looking for Syntax in Transformer Self-Attentions (Mareček and Rosa, 2019, 2018)
• Building constituency trees from multi-head self-attentions.
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Word Embeddings and Morphology



Word Embeddings

• A vector for each word (e.g. 100 dimensional, i.e. each word associated with a list of
100 real numbers)

• Learned in an unsupervised way from large plaintext corpora
• Observes the distributional hypothesis: words that appear in similar context have similar

embeddings
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Principal Component Analysis (PCA)

• Transformation to another orthogonal
basis set

• 1st principal component has the largest
possible variance across the data

• Each other principal component is
orthogonal to all preceding components
and has the largest possible variance.

• If something correlates with the highest
principal components its possibly very
important for the NLP task.
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Word-embeddings learned by NMT, correlation with POS tags

encoder decoder

N = Nouns, A = Adjectives, P = Pronouns, C = Numerals, V = Verbs,
D = Adverbs, R = Prepositions, J = Conjunctions, T = Particles, I = Interjections
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder

What is the separated island of Nouns visible
in PCA2?

When we take a sample of words from this
cluster, it contains almost exclusively named
entities:

Fang, Eliáš, Još, Aenea, Bush, Eddie,
Zlatoluna, Gordon, Bellondová, Hermiona
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Word-embedding space learnt by Sentiment Analysis

• Task: deciding whether a given text is
emotionally positive, negative, or neutral.

• Trained on Czech ČSFD database
(https://www.csfd.cz/), data were
obtained from user comments and
rankings of movies.

• Architecture: Convolutional neural
network based on Kim (2014).

Neg:“Very boring. I felt asleep.”
Pos:“Great movie with super effects!!!”
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Word-embedding space learnt by Sentiment Analysis

We sampled some words
from the vector space...
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Word-embedding space learnt by Sentiment Analysis

stupidity

bullshit

worse

muck
magnificent

precise

brilliant Simpsons

average

uninteresting

boring

absolutely

accurate

biggest

↔ … polarity of the word
↕ … intensity of the word

Word embedding space is
shaped by the task for
which it is trained.
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Looking for derivational relations

e.g. kompenzovat – kompenzace (compensate – compensation)

smutný – smutně letní – letně
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Looking for ???

• Future work: meaning?
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Multi-head Self-attentions and Syntax



Transformer NMT

на предпоследней станции

encoder decoder

input layer input layer

self-attention
masked

self-attention

feed-forward attention

feed-forward

x6

...

encoder output ...

x6

meeting a comrade

<start>
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Multi-headed Self-attention Mechanism

• Encoder: 16 attention heads × 6 layers
• Attention = weighted sum of “all” “words”

• “word”: contextual representation of word position from previous layer
• “all”: usually focused on just one word

Source: Attention is all you need (Vaswani et al., 2017)
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Observation

• Visualisation: matrix of attention weights
• Common pattern: balustrade

• Baluster: continuous sequence of words
attending to the same position

• Looks like a syntactic phrase
• Usually attends to phrase boundary

• Research questions
• Is that syntactic?
• To what extent?
• What kind of syntax?

h
u
g
e

a
re
a
s

co
ve
ri
n
g

th
o
u
sa
n
d
s

o
f

h
e
ct
a
re
s

o
f

vi
n
e
ya
rd
s

h
a
ve

b
e
e
n

b
u
rn
e
d

; th
i

huge
areas

covering
thousands

of
hectares

of
vineyards

have
been

burned

layer 4
head 13

LSD: Linguistic Structure Representation in Neural Networks Intro and Motivation Word Embeddings and Morphology Multi-head Self-attentions and Syntax 21/ 28



Balustrades (70% of the attention heads)
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Diagonals (especially 1st layer)
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Attend to end, mixed, scattered...
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Approach

1. Transformer NMT: French ↔ English, German ↔ English, French ↔ German
2. Balusters → phrase candidates

• Phrase score: average attention weight (summed and equalized)
3. Phrase candidates → binary constituency tree

• Linguistically uninformed algorithm
• Tree score = sum of phrase scores
• CKY: find tree with maximal score

4. Compare to standard constituency syntactic trees
• Penn Treebank, French Treebank, Negra Corpus (via Stanford parser)
• we observe a 40% match
• baseline has a 30% match (right-aligned balanced binary tree)
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Results
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Analysis of results

• The emergent structures can be seen as syntactic to some extent
• Shorter phrases are often captured
• Sentence clauses are often captured
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LSD: Linguistic Structure Representation in Neural Networks

Summary
1. Word embeddings and neural networks are trained without

linguistic information.
2. Examine emergent abstractions and structures!
3. Some morphology is captured.
4. Some syntax is captured.

https://ufal.cz/grants/lsd

https://ufal.cz/grants/lsd
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