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Intro and Motivation



Intro and Motivation

= Word embeddings and Deep neural networks perform great
= They do not have any explicit knowledge of linguistic abstractions

= How do they work? What emergent abstractions can we observe in them? How can we
interpret them?

= Are the emergent structures and abstractions similar to classical linguistic structures
and abstractions?
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LSD project

Linguistic Structure representation in Deep networks
= National Science Foundation of Czech Republic
= 2018 - 2020

Goals:
= Word embeddings and DNNs perform great.
= They do not have any explicit knowledge linguistic abstractions.

= How do they work? What abstractions can we observe in them? How do we interpret
them?

= Are the emergent structures similar to classical linguistic structures?
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LSD team

Rudolf Rosa Tom3as Musil
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Inspecting Word Embeddings using Principal Component Analysis (Musil, 2019)

= What features are important for word embeddings of various NLP tasks?

Derivational Morphological Relations in Word Embeddings (Musil et al., 2019)

= Unsupervised clustering of word-embedding differences captures derivational relations.

Neural Networks as Explicit Word-Based Rules (Libovicky, 2019)

= We interpret a convolutional network for sentiment classification as word-based rules.

Looking for Syntax in Transformer Self-Attentions (Marecek and Rosa, 2019, 2018)

= Building constituency trees from multi-head self-attentions.

Intro and Motivation
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Word Embeddings

= A vector for each word (e.g. 100 dimensional, i.e. each word associated with a list of
100 real numbers)

= Learned in an unsupervised way from large plaintext corpora

= Observes the distributional hypothesis: words that appear in similar context have similar
embeddings
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Principal Component Analysis (PCA)
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Word-embeddings learned by NMT, correlation with POS tags
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder
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Word-embedding space learnt by NMT encoder

What is the separated island of Nouns visible
in PCA27?

When we take a sample of words from this
cluster, it contains almost exclusively named
entities:

PCA2

Fang, Elids, Jos, Aenea, Bush, Eddie,
Zlatoluna, Gordon, Bellondova, Hermiona
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Word-embedding space learnt by Sentiment Analysis

044 L
= Task: deciding whether a given text is

emotionally positive, negative, or neutral.

= Trained on Czech CSFD database 021
(https://www.csfd.cz/), data were
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https://www.csfd.cz/

Word-embedding space learnt by Sentiment Analysis
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Word-embedding space learnt by Sentiment Analysis
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Looking for derivational relations

smutny — smutné letni — letné

LSD: Linguistic Structure Representation in Neural Networks Intro and Motivation Word Embeddings and Morphology ~ Multi-head Self-attentions and Syntax 17/ 28



Looking for 77?7

= Future work: meaning?
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Multi-head Self-attentions and Syntax



Transformer NMT
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Multi-headed Self-attention Mechanism

= Encoder: 16 attention heads x 6 layers

= Attention = weighted sum of “all” "words”
= “word": contextual representation of word position from previous layer
= “all": usually focused on just one word
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Source: Attention is all you need (Vaswani et al., 2017)
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= Visualisation: matrix of attention weights
= Common pattern: balustrade

= Baluster: continuous sequence of words

attending to the same position

= Looks like a syntactic phrase

= Usually attends to phrase boundary
» Research questions

= Is that syntactic?

= To what extent?
= What kind of syntax?
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Approach

1. Transformer NMT: French < English, German <« English, French <+ German
2. Balusters — phrase candidates

= Phrase score: average attention weight (summed and equalized)
3. Phrase candidates — binary constituency tree

= Linguistically uninformed algorithm
= Tree score = sum of phrase scores
= CKY: find tree with maximal score

4. Compare to standard constituency syntactic trees

= Penn Treebank, French Treebank, Negra Corpus (via Stanford parser)
= we observe a 40% match

= baseline has a 30% match (right-aligned balanced binary tree)
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Results
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Intro and Motivation Word Embeddings and Morphology
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Analysis of results

= The emergent structures can be seen as syntactic to some extent
= Shorter phrases are often captured

= Sentence clauses are often captured
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LSD: Linguistic Structure Representation in Neural Networks

Summary

. Word embeddings and neural networks are trained without
linguistic information.

2. Examine emergent abstractions and structures!

3. Some morphology is captured.

4. Some syntax is captured.

https://ufal.cz/grants/lsd
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