Information Retrieval via Statistical Language Modeling

Matt Lease

Brown Laboratory for Linguistic Information Processing
Brown University
Providence, RI USA
Outline

• Information Retrieval (IR) and the TF-IDF approach
• Statistical language modeling approach
 – Conceptual model & basic framework
 – Connection to TF-IDF
 – Simple extensions
• Evaluation: metrics, English data, and some results
• A few other directions, ideas, & questions
What is Information Retrieval (IR)?

- Finding information to satisfy a user’s information need
 - Retrieving textual and/or non-textual information (e.g., images)
 - Variety of tasks: filtering, categorization, summarization, etc.

- For this talk, IR = ad hoc text retrieval
 - Given
 - A **collection** of text documents (or “docs”)
 - A text **query** from a user
 - Goal: retrieve relevant documents from the collection
 - (Basically Google task without hyperlink structure or usage stats)

- This is a classic IR problem with a long history…
A Classic Approach: Vector Similarity & TF-IDF

• Queries and documents are vectors over collection vocabulary
 – Value of entry $i = \text{frequency of word } W_i \text{ in the given query/document}$
 – Relevance defined by query/doc vector similarity (e.g. cosine)

• Refinement: weight words by TF * IDF
 – Term Frequency: relative importance of word in the query/doc
 • TF = frequency of word in query/doc
 • Length normalization: use normalized % rather than # of occurrences)
 – Inverse Document Frequency: specificity of the word in the collection
 • IDF = (# of docs in collection) / (# of docs the word occurs in)

• Pros: simple, fast, & effective in practice

• Cons: many little tweaks used with little theoretical justification
 – E.g. TF and IDF usually dampened

Sparck Jones’72: A statistical interpretation of term specificity and its application in retrieval
New Approach: Statistical Language Modeling

- **Language Model (LM)**
 - Defines probability distribution over possible word sequences (infinite)
 - Example model: unigram (bag-of-words) \(P(w_{Ln} | \theta) = \prod_i P(w_i | \theta) \)
 - Heavily used in speech recognition & machine translation

- **Use in IR**
 - Estimate a LM underlying each document (i.e. the \(\theta \) above)
 - Document relevance ranked proportional to query likelihood under doc LMs

- **Some Intuition (maybe...)**
 - Often a query & relevant doc refer to the same information in different ways
 - However, if the doc were infinitely long (all possible paraphrases of the same information), presumably the query words would eventually appear in it
 - Thus, we assume query & doc are finite samples from some underlying LM which defines a probability distribution over all the ways to convey the same information
 - The challenge: estimating the “true” LM from the finite observed document

Ponte & Croft’98: A language modeling approach to information retrieval
Smoothing

• Goal: Estimate “true” LM underlying an observed document

• Step 1: Maximum-Likelihood Estimation (MLE)

• Problem: MLE leaves no mass to unseen words (they’re not likely, right?)

• Approach: “smooth” the MLE distribution (flatten peaks, fill valleys)
 – Robin Hood: rob the rich (i.e. seen words) to pay the poor (i.e. unseen words)
 – But… Who to rob and how much? Who to give to and how much?

• Heavily studied problem and many methods (C&G’98)

• For IR, usually interpolate doc LM with a LM for the entire collection
 – Collection LM estimated from many documents so more robust
 – To a rough approximation, collection can serve as held-out data to model differences between ML estimate and “truth”
Formal Machinery and TF-IDF Comparison

1. $P(d \mid q) \propto P(q \mid d)P(d)$

1. Bayes’ rule
Formal Machinery and TF-IDF Comparison

1. $P(d \mid q) \propto P(q \mid d)P(d)$
2. $P(d \mid q) \propto P(q \mid d)$

1. Bayes’ rule
2. Uniform doc prior
Formal Machinery and TF-IDF Comparison

1. $P(d | q) \propto P(q | d)P(d)$
2. $P(d | q) \propto P(q | d)$
3. $P(d | q_{1:n}) \propto \prod_i P(q_i | d) \propto \sum_i \log P(q_i | d)$

1. Bayes’ rule
2. Uniform doc prior
3. Unigram LM
Formal Machinery and TF-IDF Comparison

1. $P(d \mid q) \propto P(q \mid d)P(d)$
2. $P(d \mid q) \propto P(q \mid d)$
3. $P(d \mid q_{1:n}) \propto \prod_{i} P(q_i \mid d) \propto \sum_{i} \log P(q_i \mid d)$
4. $P(q_i \mid d) = (1 - \lambda)P_{ML}(q_i \mid d) + \lambda P(q_i \mid C)$

1. Bayes’ rule
2. Uniform doc prior
3. Unigram LM
4. Linear smoothing
Formal Machinery and TF-IDF Comparison

1. $P(d \mid q) \propto P(q \mid d)P(d)$
2. $P(d \mid q) \propto P(q \mid d)$
3. $P(d \mid q_{1:n}) \propto \prod_i P(q_i \mid d) \propto \sum_i \log P(q_i \mid d)$
4. $P(q_i \mid d) = (1 - \lambda)P_{ML}(q_i \mid d) + \lambda P(q_i \mid C)$
5. $P(d \mid q_{1:n}) \propto \sum_{i:c(q_i,d)>0} \log P(q_i \mid d) + \sum_{i:c(q_i,d)=0} \log \lambda P(q_i \mid C)$

1. Bayes’ rule
2. Uniform doc prior
3. Unigram LM
4. Linear smoothing
5. Seen / unseen
Formal Machinery and TF-IDF Comparison

1. \(P(d \mid q) \propto P(q \mid d)P(d) \)
2. \(P(d \mid q) \propto P(q \mid d) \)
3. \(P(d \mid q_{1:n}) \propto \prod_i P(q_i \mid d) \propto \sum_i \log P(q_i \mid d) \)
4. \(P(q_i \mid d) = (1 - \lambda)P_{ML}(q_i \mid d) + \lambda P(q_i \mid C) \)
5. \(P(d \mid q_{1:n}) \propto \sum_{i \mid c(q_i, d) > 0} \log P(q_i \mid d) + \sum_{i \mid c(q_i, d) = 0} \log \lambda P(q_i \mid C) \)
6. \(P(d \mid q_{1:n}) \propto \sum_{i \mid c(q_i, d) > 0} \log \frac{P(q_i \mid d)}{\lambda P(w_i \mid C)} + \sum_{i} \log \lambda P(q_i \mid C) \)

1. Bayes’ rule
2. Uniform doc prior
3. Unigram LM
4. Linear smoothing
5. Seen / unseen
6. Algebra
Formal Machinery and TF-IDF Comparison

1. \(P(d \mid q) \propto P(q \mid d)P(d) \)
2. \(P(d \mid q) \propto P(q \mid d) \)
3. \(P(d \mid q_{1:n}) \propto \prod_{i} P(q_{i} \mid d) \propto \sum_{i} \log P(q_{i} \mid d) \)
4. \(P(q_{i} \mid d) = (1 - \lambda)P_{ML}(q_{i} \mid d) + \lambda P(q_{i} \mid C) \)
5. \(P(d \mid q_{1:n}) \propto \sum_{i:c(q_{i},d)>0} \log P(q_{i} \mid d) + \sum_{i:c(q_{i},d)=0} \log \lambda P(q_{i} \mid C) \)
6. \(P(d \mid q_{1:n}) \propto \sum_{i:c(q_{i},d)>0} \log \frac{P(q_{i} \mid d)}{\lambda P(w_{i} \mid C)} + \sum_{i} \log \lambda P(q_{i} \mid C) \)
7. \(P(d \mid q_{1:n}) \propto \sum_{i:c(q_{i},d)>0} \log \frac{P(q_{i} \mid d)}{\lambda P(w_{i} \mid C)} + n \log \lambda + \sum_{i} \log P(q_{i} \mid C) \)

1. Bayes’ rule
2. Uniform doc prior
3. Unigram LM
4. Linear smoothing
5. Seen / unseen
6-7. Algebra
Formal Machinery and TF-IDF Comparison

1. \(P(d \mid q) \propto P(q \mid d)P(d) \)
2. \(P(d \mid q) \propto P(q \mid d) \)
3. \(P(d \mid q_{1:n}) \propto \prod_{i} P(q_i \mid d) \propto \sum \log P(q_i \mid d) \)
4. \(P(q_i \mid d) = (1 - \lambda)P_{ML}(q_i \mid d) + \lambda P(q_i \mid C) \)
5. \(P(d \mid q_{1:n}) \propto \sum_{i: c(q_i, d) > 0} \log P(q_i \mid d) + \sum_{i: c(q_i, d) = 0} \log \lambda P(q_i \mid C) \)

6. \(P(d \mid q_{1:n}) \propto \sum_{i: c(q_i, d) > 0} \log \frac{P(q_i \mid d)}{\lambda P(w_i \mid C)} + \sum_{i} \log \lambda P(q_i \mid C) \) 6-7. Algebra

7. \(P(d \mid q_{1:n}) \propto \sum_{i: c(q_i, d) > 0} \log \frac{P(q_i \mid d)}{\lambda P(w_i \mid C)} + n \log \lambda + \sum_{i} \log P(q_i \mid C) \)

8. \(P(d \mid q_{1:n}) \propto \sum_{i: c(q_i, d) > 0} \log \frac{P(q_i \mid d)}{\lambda P(w_i \mid C)} + n \log \lambda \) 8. Ignore constant

\(\sim \) Term Frequency
\(\sim \) Length Normalization
Outline

• IR and a classic approach to it: TF-IDF
• Statistical language modeling approach
 – Conceptual model & basic framework
 – Connection to TF-IDF
 – Simple extensions
• Evaluation: metrics, English data, and some results
• A few other directions, ideas, & questions
Document Expansion

• Brill: “There’s no data like more data”
 – Could estimate a doc’s “true” LM better if doc were longer (bigger sample)
• Problem: usually difficult/expensive to acquire the right kind of data
 – Pay someone to manually extend all docs in collection?!?
• Strategy: can often acquire “similar” data cheaply, and it often helps
• Here, simulate longer doc by mixing its LM with “similar” doc LMs
 – Set mixing weights proportional to similarity (norm. cosine) and doc length
• Interpolation with collection as document expansion
 – An alternative explanation for collection interpolation
 – one-size-fits-all vs. more specific smoothing
Query Expansion (Pseudo-Relevance Feedback)

• Intuition: address paraphrase mismatch by expanding query
• First idea: just add words to query
 – coarse granularity
• Instead reformulate our setup slightly
 – Estimate a LM for query as well as documents
 – Compute relevance as similarity between doc LM and the query LM
 – (we’re back to traditional vector space model, only with better statistical theory and tools for weight estimation)
• But what words to add and how to weight them?
• Now a simple trick (semi-supervised learning)
 – Run query
 – Assume first N documents retrieved are relevant
 – Interpolate query LM with these N doc LMs
 – Re-run query
• Generally improves retrieval significantly, but sensitive to parameters
 – Parameter-free approach recently given in (Tao & Zhai, SIGIR’06)
Outline

• IR and a classic approach to it: TF-IDF

• Statistical language modeling approach
 – Conceptual model & basic framework
 – Connection to TF-IDF
 – Simple extensions

• Evaluation: metrics, English data, and some results

• A few other directions, ideas, & questions
Evaluation

- NIST TREC competitions have driven data/metrics for English IR
- Documents are manually annotated as relevant or not (binary)
 - Only subset of collections annotated (possible recall errors)
- Single query
 - Precision: # relevant docs retrieved / total # docs retrieved
 - Recall: # relevant docs retrieved / total # relevant docs
 - Given doc ranking, let P_i be precision at the rank of ith relevant doc
 - E.g. If 1st, 2nd, & 5th ranked doc relevant: $P_1=1/1$, $P_2=2/2$, $P_3=3/5$
 - For relevant docs not retrieved at all, assume $P_i = 0$
 - Average Precision (AP) = P_i averaged across all of the query’s relevant docs
- Multiple queries
 - Mean Average Precision (MAP): AP averaged over all queries
English Queries

- NIST queries written at multiple levels of detail (fields)
 - TREC primarily had systems treat the *description* field as the input query
 - Research tends to use the *title* field as the input query (more like typical keyword query)

- NOTE: **underlining indicates new information not found in coarser fields of query**

- Example 1
 - **Title**: Antitrust Cases Pending
 - **Description**: Document discusses a pending antitrust case
 - **Narrative**: To be relevant, a document will discuss a pending antitrust case and will identify the alleged violation as well as the government entity investigating the case. Identification of the industry and the companies involved is optional. The antitrust investigation must be a result of a complaint, NOT as part of a routine review.

- Example 2
 - **Title**: Acquisitions
 - **Description**: Document discusses a currently proposed acquisition involving a U.S. company and a foreign company
 - **Narrative**: To be relevant, a document must discuss a currently proposed acquisition (which may or may not be identified by type, e.g., merger, buyout, leveraged buyout, hostile takeover, friendly acquisition). The suitor and target must be identified by name; the nationality of one of the companies must be identified as U.S. and the nationality of the other company must be identified as NOT U.S.

Also some other fields that identify and define relevant terms
English Collections

<table>
<thead>
<tr>
<th>Disk 1</th>
<th>Size (megabytes)</th>
<th># Docs</th>
<th>Median # Words/Doc</th>
<th>Mean # Words/Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Press newswire, 1989</td>
<td>254</td>
<td>84,678</td>
<td>446</td>
<td>473.9</td>
</tr>
<tr>
<td>Computer Selects articles, Ziff-Davis</td>
<td>242</td>
<td>75,180</td>
<td>200</td>
<td>473.0</td>
</tr>
<tr>
<td>Federal Register, 1989</td>
<td>260</td>
<td>25,960</td>
<td>391</td>
<td>1315.9</td>
</tr>
<tr>
<td>abstracts of U.S. DOE publications</td>
<td>184</td>
<td>226,087</td>
<td>111</td>
<td>120.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk 2</th>
<th>Size (megabytes)</th>
<th># Docs</th>
<th>Median # Words/Doc</th>
<th>Mean # Words/Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Street Journal, 1990–1992 (WSJ)</td>
<td>242</td>
<td>74,520</td>
<td>301</td>
<td>508.4</td>
</tr>
<tr>
<td>Computer Selects articles, Ziff-Davis (ZIFF)</td>
<td>175</td>
<td>56,920</td>
<td>182</td>
<td>451.9</td>
</tr>
<tr>
<td>Federal Register (1988) (FR88)</td>
<td>209</td>
<td>19,860</td>
<td>396</td>
<td>1378.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk 3</th>
<th>Size (megabytes)</th>
<th># Docs</th>
<th>Median # Words/Doc</th>
<th>Mean # Words/Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jose Mercury News, 1991</td>
<td>287</td>
<td>90,257</td>
<td>379</td>
<td>453.0</td>
</tr>
<tr>
<td>Associated Press newswire, 1990</td>
<td>237</td>
<td>78,321</td>
<td>451</td>
<td>478.4</td>
</tr>
<tr>
<td>Computer Selects articles, Ziff-Davis</td>
<td>345</td>
<td>161,021</td>
<td>122</td>
<td>295.4</td>
</tr>
<tr>
<td>U.S. patents, 1993</td>
<td>243</td>
<td>6,711</td>
<td>4445</td>
<td>5391.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk 4</th>
<th>Size (megabytes)</th>
<th># Docs</th>
<th>Median # Words/Doc</th>
<th>Mean # Words/Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Register, 1994 (FR94)</td>
<td>395</td>
<td>55,630</td>
<td>588</td>
<td>644.7</td>
</tr>
<tr>
<td>Congressional Record, 1993 (CR)</td>
<td>235</td>
<td>27,922</td>
<td>288</td>
<td>1373.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk 5</th>
<th>Size (megabytes)</th>
<th># Docs</th>
<th>Median # Words/Doc</th>
<th>Mean # Words/Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Broadcast Information Service (FBIS)</td>
<td>470</td>
<td>130,471</td>
<td>322</td>
<td>543.6</td>
</tr>
<tr>
<td>the LA Times</td>
<td>475</td>
<td>131,896</td>
<td>351</td>
<td>526.5</td>
</tr>
</tbody>
</table>
Some numbers

- Collection: TREC 6-8 (~Disks 4-5, 0.5M docs)
- Queries: TREC 401-450 (~5K relevant docs)

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC-8 InQuery (TF-IDF based) system</td>
<td>0.2325</td>
</tr>
</tbody>
</table>
Some numbers

- Collection: TREC 6-8 (~Disks 4-5, 0.5M docs)
- Queries: TREC 401-450 (~5K relevant docs)

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC-8 InQuery (TF-IDF based) system</td>
<td>0.2325</td>
</tr>
<tr>
<td>LM, linear interpolation with collection LM</td>
<td>0.2392</td>
</tr>
</tbody>
</table>

Allan et al. ’99: INQUERY and TREC-8
Namba & Igata’99: Fujitsu Laboratories TREC-8 Report
Tao et al.‘06: Language Model Information Retrieval with Document Expansion
Some numbers

- **Collection**: TREC 6-8 (~Disks 4-5, 0.5M docs)
- **Queries**: TREC 401-450 (~5K relevant docs)

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC-8 InQuery (TF-IDF based) system</td>
<td>0.2325</td>
</tr>
<tr>
<td>LM, linear interpolation with collection LM</td>
<td>0.2392</td>
</tr>
<tr>
<td>LM, Dirichlet smoothing (DS) with collection LM</td>
<td>0.2567</td>
</tr>
</tbody>
</table>

Allan et al. ’99: *INQUERY and TREC-8*
Namba & Igata’99: *Fujitsu Laboratories TREC-8 Report*
Tao et al.‘06: *Language Model Information Retrieval with Document Expansion*
Some numbers

- **Collection:** TREC 6-8 (~Disks 4-5, 0.5M docs)
- **Queries:** TREC 401-450 (~5K relevant docs)

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC-8 InQuery (TF-IDF based) system</td>
<td>0.2325</td>
</tr>
<tr>
<td>LM, linear interpolation with collection LM</td>
<td>0.2392</td>
</tr>
<tr>
<td>LM, Dirichlet smoothing (DS) with collection LM</td>
<td>0.2567</td>
</tr>
<tr>
<td>LM, DS, document expansion (DE)</td>
<td>0.2671</td>
</tr>
</tbody>
</table>

Allan et al. ’99: *INQUERY and TREC-8*
Namba & Igata’99: *Fujitsu Laboratories TREC-8 Report*
Tao et al.‘06: *Language Model Information Retrieval with Document Expansion*
Some numbers

- Collection: TREC 6-8 (~Disks 4-5, 0.5M docs)
- Queries: TREC 401-450 (~5K relevant docs)

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC-8 InQuery (TF-IDF based) system</td>
<td>0.2325</td>
</tr>
<tr>
<td>LM, linear interpolation with collection LM</td>
<td>0.2392</td>
</tr>
<tr>
<td>LM, Dirichlet smoothing (DS) with collection LM</td>
<td>0.2567</td>
</tr>
<tr>
<td>LM, DS, document expansion (DE)</td>
<td>0.2671</td>
</tr>
<tr>
<td>LM, DS, query expansion (QE)</td>
<td>0.2716</td>
</tr>
</tbody>
</table>

Allan et al. '99: INQUERY and TREC-8
Namba & Igata'99: Fujitsu Laboratories TREC-8 Report
Tao et al.‘06: Language Model Information Retrieval with Document Expansion
Some numbers

- **Collection:** TREC 6-8 (~Disks 4-5, 0.5M docs)
- **Queries:** TREC 401-450 (~5K relevant docs)

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC-8 InQuery (TF-IDF based) system</td>
<td>0.2325</td>
</tr>
<tr>
<td>LM, linear interpolation with collection LM</td>
<td>0.2392</td>
</tr>
<tr>
<td>LM, Dirichlet smoothing (DS) with collection LM</td>
<td>0.2567</td>
</tr>
<tr>
<td>LM, DS, document expansion (DE)</td>
<td>0.2671</td>
</tr>
<tr>
<td>LM, DS, query expansion (QE)</td>
<td>0.2716</td>
</tr>
<tr>
<td>LM, DS, DE+QE</td>
<td>0.2809</td>
</tr>
</tbody>
</table>
Some numbers

- **Collection**: TREC 6-8 (~Disks 4-5, 0.5M docs)
- **Queries**: TREC 401-450 (~5K relevant docs)

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC-8 InQuery (TF-IDF based) system</td>
<td>0.2325</td>
</tr>
<tr>
<td>LM, linear interpolation with collection LM</td>
<td>0.2392</td>
</tr>
<tr>
<td>LM, Dirichlet smoothing (DS) with collection LM</td>
<td>0.2567</td>
</tr>
<tr>
<td>LM, DS, document expansion (DE)</td>
<td>0.2671</td>
</tr>
<tr>
<td>LM, DS, query expansion (QE)</td>
<td>0.2716</td>
</tr>
<tr>
<td>LM, DS, DE+QE</td>
<td>0.2809</td>
</tr>
<tr>
<td>TREC-8 Fujitsu system</td>
<td>0.2853</td>
</tr>
</tbody>
</table>
Outline

• IR and a classic approach to it: TF-IDF
• Statistical language modeling approach
 – Conceptual model & basic framework
 – Connection to TF-IDF
 – Simple extensions
• Evaluation: metrics, English data, and some results
• A few other directions, ideas, & questions
Task: Multilingual Document Retrieval

• Problem: relevant documents may not be in user’s native language

• Ideal solution
 – User expresses query in native language
 – System retrieves relevant docs in any language
 – System translates relevant docs to native language (as needed)

• Track at CLEF’07 (Cross-Language Evaluation Forum)
 – English and Czech document collections (and others)
 – Queries can be issued in English or Czech (and a few other languages)
 • Also a mono-lingual Czech task, but not for English

• A few questions
 – How robust is LM approach cross-linguistically (e.g. mono-lingual IR in non-English)?
 – Do we observe the same trends between data characteristics and performance?

• Previous work in LM paradigm: Xu’01, Lavrenko’02, …?
Task: Cross-Language Speech Retrieval

- Another track at CLEF’07
 - “Documents” are conversations in English and Czech
 - Queries in English or Czech (and a few other languages)
- Chance to apply Brown’s previous work in disfluency analysis and parsing of (English) conversational speech
 - Charniak and Johnson’01: detecting speech repairs and parsing
 - Johnson and Charniak’04: better repair detection
 - Lease, Johnson, and Charniak’06: detect fillers & repairs (better)
Interesting research: “Translation” Models

• Queries and docs are quite different written artifacts, so why not model this (in query likelihood)?

• Approach: define a “translation” model which generates queries from documents (e.g. noisy channel)

• Previous work
 – Berger & Lafferty’99, Jin et al. ‘02, Cao et al.’05, …?

• Results
 – improves over the basic LM methods
 – computationally expensive
Interesting research: Topic/Aspect Models

• Documents often span more than one topic, yet our model represents each document by exactly 1 LM

• Instead, could model doc as mixture of 1-to-N topic LMs
 – Generative process
 • pick length of document
 • for each word position
 – pick a topic
 – pick a word given topic

• Previous work: Hofmann’99, Blei et al’02, …?

• Results?
Summary

• Strengths
 – Solid statistical foundation
 – Lots of existing LM methodology to build on
 – Relatively simple models perform well empirically

• Challenges
 – Accurate as full-fledged traditional systems?
 – Efficient as traditional systems?

• What’s next?
 – Many interesting directions to explore
Acknowledgement

This talk draws on the following great tutorial:

Zhai is also presenting a similar tutorial at HLT/NAACL’07
For more information…

Brown Laboratory for Linguistic Information Processing (BLLIP)
http://bllip.cs.brown.edu

Project is being undertaken at the
Institute of Formal and Applied Linguistics (ÚFAL)
at the Faculty of Mathematics and Physics, Charles University, Prague
http://ufal.mff.cuni.cz

Support for this work comes from the
National Science Foundation
Partnerships for International Research and Education (PIRE)