Logical Theory of Evaluative Linguistic Expressions II

Vilém Novák

University of Ostrava
Institute for Research and Applications of Fuzzy Modeling
30. dubna 22, 701 03 Ostrava 1, Czech Republic

Vilem.Novak@osu.cz

Praha, 29. 10. 2007
Outline

1. Fuzzy type theory

2. Formalization of TEv-expression
What we are speaking about?

- **Evaluative linguistic expressions:**
 small, medium, big, twenty five, roughly one hundred, very short, more or less strong, not tall, about twenty five, the sea is deep but not very, roughly small or medium, very roughly strong

- **Evaluative linguistic predications:**
 weight is small, pressure is very high, extremely rich person
What we are speaking about?

- Evaluative linguistic expressions:

 small, medium, big, twenty five, roughly one hundred, very short, more or less strong, not tall, about twenty five, the sea is deep but not very, roughly small or medium, very roughly strong

- Evaluative linguistic predications:

 weight is small, pressure is very high, extremely rich person
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: $\scriptstyle o$ (truth values), ϵ (objects)

Composed types: $\beta\alpha$

Each formula has a certain type: $A_\alpha \in Form_\alpha$

Fuzzy equality: $A_\beta \equiv B_\beta$

$\lambda x_\alpha C_\beta$ — formula of type $\beta\alpha$ (*lambda term*)

Delta connective: Δ_{oo} (*surely*)

Description operator $\iota_{\alpha(\omega\alpha)}$

Formulas of type o are propositions
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: σ (truth values), ϵ (objects)
Composed types: $\beta\alpha$

Each formula has a certain type: $A_\alpha \in \text{Form}_\alpha$
Fuzzy equality: $A_\beta \equiv B_\beta$
$\lambda x_\alpha C_\beta$ — formula of type $\beta\alpha$ (*lambda term*)
Delta connective: $\Delta_{\sigma\sigma}$ (*surely*)
Description operator $\iota_{\alpha(\sigma_\alpha)}$
Formulas of type σ are propositions
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: σ (truth values), ϵ (objects)

Composed types: $\beta\alpha$

Each formula has a certain type: $A_\alpha \in \text{Form}_\alpha$

Fuzzy equality: $A_\beta \equiv B_\beta$

$\lambda x_\alpha C_\beta$ — formula of type $\beta\alpha$ (*lambda term*)

Delta connective: $\Delta_{\sigma\sigma}$ (*surely*)

Description operator $\iota_\alpha(\sigma_\alpha)$

Formulas of type σ are propositions
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: σ (truth values), ϵ (objects)
Composed types: $\beta\alpha$

Each formula has a certain type: $A_\alpha \in Form_\alpha$

Fuzzy equality: $A_\beta \equiv B_\beta$

$\lambda x_\alpha C_\beta$ — formula of type $\beta\alpha$ (lambda term)

Delta connective: $\Delta_{\sigma\sigma}$ (surely)

Description operator $\iota_\alpha(\sigma\alpha)$

Formulas of type σ are propositions
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: o (truth values), $ε$ (objects)

Composed types: $βα$

Each formula has a certain type: $A_α \in Form_α$

Fuzzy equality: $A_β \equiv B_β$

$\lambda x_α C_β$ — formula of type $βα$ (*lambda term*)

Delta connective: $∆_{oo}$ (*surely*)

Description operator $ι_{α(oα)}$

Formulas of type o are propositions
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: σ (truth values), ϵ (objects)

Composed types: $\beta\alpha$

Each formula has a certain type: $A_\alpha \in \text{Form}_\alpha$

Fuzzy equality: $A_\beta \equiv B_\beta$

$\lambda x_\alpha C_\beta$ — formula of type $\beta\alpha$ (lambda term)

Delta connective: $\Delta_{\sigma\sigma}$ (surely)

Description operator $\iota_{\alpha(\sigma\alpha)}$

Formulas of type σ are propositions
Fuzzy type theory — syntax

- B. Russel

Types

- Elementary types: \(\alpha \) (truth values), \(\epsilon \) (objects)
- Composed types: \(\beta \alpha \)

Each formula has a certain type: \(A_\alpha \in Form_\alpha \)

- Fuzzy equality: \(A_\beta \equiv B_\beta \)
- \(\lambda x_\alpha C_\beta \) — formula of type \(\beta \alpha \) (lambda term)
- Delta connective: \(\Delta_{\alpha\alpha} \) (surely)

Description operator \(\iota_\alpha(\alpha\alpha) \)

Formulas of type \(\alpha \) are propositions
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: \(o \) (truth values), \(\epsilon \) (objects)

Composed types: \(\beta\alpha \)

Each formula has a certain type: \(A_\alpha \in Form_\alpha \)

- Fuzzy equality: \(A_\beta \equiv B_\beta \)
- \(\lambda x_\alpha C_\beta \) — formula of type \(\beta\alpha \) (lambda term)
- Delta connective: \(\Delta_{oo} \) (surely)
- Description operator \(\iota_\alpha(o_\alpha) \)

Formulas of type \(o \) are propositions
Fuzzy type theory — syntax

- B. Russel

Types

Elementary types: \circ (truth values), ϵ (objects)
Composed types: β_α

Each formula has a certain type: $A_\alpha \in Form_\alpha$
Fuzzy equality: $A_\beta \equiv B_\beta$
$\lambda x_\alpha C_\beta$ — formula of type β_α *(lambda term)*
Delta connective: Δ_{oo} *(surely)*
Description operator $\iota_\alpha(\circ_\alpha)$

Formulas of type \circ are propositions
Logical connectives

- **Equivalence:** $A_o \equiv B_o$ \textbf{basic connective!}
- **Implication:** $A_o \Rightarrow B_o$
- **Disjunction:** $A_o \lor B_o$
- **Conjunction:** $A_o \land B_o$, interpreted by minimum (\land) phrasal conjunction
- **Strong conjunction:** $A_o \& B_o$, interpreted by \otimes sentential conjunction
- **Delta connective (surely):** ΔA_o

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts

(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

$$
\frac{a/A_o, c/A_o \Rightarrow B_o}{a \otimes c/B_o}
$$
Logical connectives

- **Equivalence:** $A_o \equiv B_o$
- **Implication:** $A_o \Rightarrow B_o$
- **Disjunction:** $A_o \lor B_o$
- **Conjunction:** $A_o \land B_o$, interpreted by minimum (\land) phrasal conjunction
- **Strong conjunction:** $A_o \& B_o$, interpreted by \otimes sentential conjunction
- **Delta connective (surely):** ΔA_o

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts

(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

\[
\frac{a/A_o, c/A_o \Rightarrow B_o}{a \otimes c/B_o}
\]
Logical connectives

- **Equivalence**: $A_o \equiv B_o$
 basic connective!
- **Implication**: $A_o \Rightarrow B_o$
- **Disjunction**: $A_o \lor B_o$
- **Conjunction**: $A_o \land B_o$, interpreted by minimum (\land) phrasal conjunction
- **Strong conjunction**: $A_o \& B_o$, interpreted by \otimes sentential conjunction
- **Delta connective (surely)**: ΔA_o

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts
(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

$$a/A_o, c/A_o \Rightarrow B_o \quad \quad \quad a \otimes c / B_o$$
Logical connectives

- **Equivalence:** $A_o \equiv B_o$
 - basic connective!
- **Implication:** $A_o \Rightarrow B_o$
- **Disjunction:** $A_o \lor B_o$
- **Conjunction:** $A_o \land B_o$, interpreted by minimum (\land) phrasal conjunction
 - **Strong conjunction:** $A_o \& B_o$, interpreted by \otimes sentential conjunction
 - **Delta connective (surely):** $\triangle A_o$

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts

(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

$$
\frac{a/A_o, c/A_o \Rightarrow B_o}{a \otimes c/B_o}
$$
Logical connectives

- **Equivalence**: $A_o \equiv B_o$
 basic connective!
- **Implication**: $A_o \Rightarrow B_o$
- **Disjunction**: $A_o \lor B_o$
- **Conjunction**: $A_o \land B_o$, interpreted by minimum (\land) phrasal conjunction
- **Strong conjunction**: $A_o & B_o$, interpreted by \otimes sentential conjunction
- **Delta connective (surely)**: ΔA_o

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts
(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

$$
\begin{align*}
 & a/A_o, c/A_o \Rightarrow B_o \\
 \hline
 & a \otimes c/B_o
\end{align*}
$$
Logical connectives

- **Equivalence**: $A_o \equiv B_o$
 basic connective!
- **Implication**: $A_o \Rightarrow B_o$
- **Disjunction**: $A_o \lor B_o$
- **Conjunction**: $A_o \land B_o$, interpreted by minimum (\land)
 phrasal conjunction
- **Strong conjunction**: $A_o \& B_o$, interpreted by \otimes
 sentential conjunction
- **Delta connective (surely)**: ΔA_o

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts
(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

$$\frac{a/A_o, c/A_o \Rightarrow B_o}{a \otimes c/B_o}$$
Logical connectives

- **Equivalence**: $A_o \equiv B_o$
 basic connective!
- **Implication**: $A_o \Rightarrow B_o$
- **Disjunction**: $A_o \lor B_o$
- **Conjunction**: $A_o \land B_o$, interpreted by minimum (\land) phrasal conjunction
- **Strong conjunction**: $A_o \& B_o$, interpreted by \otimes sentential conjunction
- **Delta connective (surely)**: ΔA_o

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts

(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

\[
\frac{a/A_o, c/A_o \Rightarrow B_o}{a \otimes c/B_o}
\]
Logical connectives

- **Equivalence:** $A_o \equiv B_o$
 basic connective!
- **Implication:** $A_o \Rightarrow B_o$
- **Disjunction:** $A_o \lor B_o$
- **Conjunction:** $A_o \land B_o$, interpreted by minimum (\land)
 phrasal conjunction
- **Strong conjunction:** $A_o \& B_o$, interpreted by \otimes
 sentential conjunction
- **Delta connective (surely):** ΔA_o

Local character of conjunction: resulting truth degree depends on the meaning of conjuncts
(slow and safe car; big and beautiful house)

Modus ponens requires strong conjunction

\[
\frac{a/A_o, c/A_o \Rightarrow B_o}{a \otimes c/B_o}
\]
Structure of truth values

Łukasiewicz Δ-algebra (\mathcal{L}_Δ) (IMTLΔ-algebra)

$$\mathcal{L} = \langle [0, 1], \lor, \land, \otimes, \Delta, \rightarrow, 0, 1 \rangle$$

\lor, \land minimum, maximum

$$a \otimes b = 0 \lor (a + b - 1), \quad (\otimes = \text{left continuous t-norm})$$

$$a \rightarrow b = 1 \land (1 - a + b) \quad (\rightarrow = \text{residuation})$$

$$\neg a = a \rightarrow 0 = 1 - a, \quad \neg \neg a = a$$

$$\Delta(a) = \begin{cases} 1 & \text{if } a = 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$a \leftrightarrow b = (a \rightarrow b) \land (b \rightarrow a)$$
Fuzzy equality

Fuzzy relation $=^{\alpha}$: $M_{\alpha} \times M_{\alpha} \rightarrow L$

\[
[x =^{\alpha} x] = 1 \quad \text{(reflexivity)}
\]
\[
[x =^{\alpha} y] = [y =^{\alpha} x] \quad \text{(symmetry)}
\]
\[
[x =^{\alpha} y] \otimes [y =^{\alpha} z] \leq [x =^{\alpha} z] \quad \text{(transitivity)}
\]

Example

\[
[x =^{\alpha} y] = 0 \lor (1 - |x - y|)
\]
\[
[x =^{\alpha} y] = \begin{cases}
1, \text{if } x = y \\
\frac{1}{v-u} \cdot ((v-x) \land (v-y)) \lor ((x-u) \land (y-u))
\end{cases}
\]
Fuzzy equality

Fuzzy relation $=_{\alpha}: M_{\alpha} \times M_{\alpha} \rightarrow L$

$[x =_{\alpha} x] = 1$ \hspace{1cm} (reflexivity)

$[x =_{\alpha} y] = [y =_{\alpha} x]$ \hspace{1cm} (symmetry)

$[x =_{\alpha} y] \otimes [y =_{\alpha} z] \leq [x =_{\alpha} z]$ \hspace{1cm} (transitivity)

Example

$[x =_{\alpha} y] = 0 \lor (1 - |x - y|)$

$[x =_{\alpha} y] = \begin{cases} 1, \text{ if } x = y \\ \frac{1}{v-u} \cdot ((v-x) \land (v-y)) \lor ((x-u) \land (y-u)) \end{cases}$
Semantics – frame

Frame \mathcal{M}

$\mathcal{I} = \langle (M_\alpha, =\alpha)_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle$

$(M_o = \{a \mid a \in L\}, \leftrightarrow)$ \quad $(M_\epsilon = \{u \mid \varphi(u)\}, =\epsilon)$

$(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_o \rightarrow M_o\}, =_{oo})$

$(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_o \rightarrow M_\epsilon\}, =_{o\epsilon})$

$(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_\epsilon \rightarrow M_\epsilon\}, =_{\epsilon\epsilon}), \ldots$

\vdots

$(M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_\alpha \rightarrow M_\beta\}, =_{\beta\alpha})$

\vdots
Semantics – frame

Frame \mathcal{M}

$$I = \langle (M_{\alpha}, =_{\alpha})_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle$$

$$(M_0 = \{a \mid a \in L\}, \leftrightarrow) \quad (M_\epsilon = \{u \mid \varphi(u)\}, =_\epsilon)$$

$$(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_0 \to M_0\}, =_{oo})$$

$$(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_\epsilon \to M_0\}, =_{o\epsilon})$$

$$(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_\epsilon \to M_\epsilon\}, =_{\epsilon\epsilon}), \ldots$$

$$(M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_\alpha \to M_\beta\}, =_{\beta\alpha})$$

$$\ldots$$
Semantics – frame

Frame \mathcal{M}

$$\mathcal{I} = \langle (\mathcal{M}_\alpha, =_\alpha)_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle$$

$$(\mathcal{M}_o = \{a \mid a \in L\}, \leftrightarrow) \quad (\mathcal{M}_\epsilon = \{u \mid \varphi(u)\}, =_{\epsilon})$$

$$(\mathcal{M}_{oo} \subseteq \{g_{oo} \mid g_{oo} : \mathcal{M}_o \rightarrow \mathcal{M}_o\}, =_{oo})$$

$$(\mathcal{M}_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : \mathcal{M}_\epsilon \rightarrow \mathcal{M}_o\}, =_{o\epsilon})$$

$$(\mathcal{M}_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : \mathcal{M}_\epsilon \rightarrow \mathcal{M}_\epsilon\}, =_{\epsilon\epsilon}), \ldots$$

$$\vdots$$

$$(\mathcal{M}_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : \mathcal{M}_\alpha \rightarrow \mathcal{M}_\beta\}, =_{\beta\alpha})$$

$$\vdots$$
Fuzzy type theory

Formalization of TEv-expression

Semantics – frame

Frame \(\mathcal{M} \)

\[
\mathcal{I} = \langle (M_\alpha, =_\alpha)_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle
\]

\((M_o = \{a \mid a \in L\}, \leftrightarrow)\) \quad \((M_\epsilon = \{u \mid \varphi(u)\}, =_\epsilon)\)

\((M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_o \to M_o\}, =_{oo})\)

\((M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_\epsilon \to M_o\}, =_{o\epsilon})\)

\((M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_\epsilon \to M_\epsilon\}, =_{\epsilon\epsilon})\), \ldots

\vdots

\((M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_\alpha \to M_\beta\}, =_{\beta\alpha})\)

\vdots
Semantics – frame

Frame \mathcal{M}

$$\mathcal{I} = \langle (M_\alpha, =_\alpha)_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle$$

$$M_0 = \{ a \mid a \in L \}, \leftrightarrow$$

$$M_\varepsilon = \{ u \mid \varphi(u) \}, =_\varepsilon$$

$$(M_{oo} \subseteq \{ g_{oo} \mid g_{oo} : M_o \to M_o \}, =_{oo})$$

$$(M_{o\varepsilon} \subseteq \{ f_{o\varepsilon} \mid f_{o\varepsilon} : M_\varepsilon \to M_o \}, =_{o\varepsilon})$$

$$(M_{\varepsilon\varepsilon} \subseteq \{ f_{\varepsilon\varepsilon} \mid f_{\varepsilon\varepsilon} : M_\varepsilon \to M_\varepsilon \}, =_{\varepsilon\varepsilon})$$

$$\vdots$$

$$(M_{\beta\alpha} \subseteq \{ f_{\beta\alpha} \mid f_{\beta\alpha} : M_\alpha \to M_\beta \}, =_{\beta\alpha})$$

$$\vdots$$
Semantics – frame

Frame \mathcal{M}

\[\mathcal{I} = \langle (M_\alpha, =_\alpha)_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle \]

\[(M_o = \{ a \mid a \in L \}, \leftrightarrow) \quad (M_\epsilon = \{ u \mid \varphi(u) \}, =_\epsilon) \]

\[(M_{oo} \subseteq \{ g_{oo} \mid g_{oo} : M_o \rightarrow M_o \}, =_{oo}) \]

\[(M_{o\epsilon} \subseteq \{ f_{o\epsilon} \mid f_{o\epsilon} : M_\epsilon \rightarrow M_o \}, =_{o\epsilon}) \]

\[(M_{\epsilon\epsilon} \subseteq \{ f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_\epsilon \rightarrow M_\epsilon \}, =_{\epsilon\epsilon}) \]

\[\vdots \]

\[(M_{\beta\alpha} \subseteq \{ f_{\beta\alpha} \mid f_{\beta\alpha} : M_\alpha \rightarrow M_\beta \}, =_{\beta\alpha}) \]

\[\vdots \]
Semantics – frame

Frame \mathcal{M}

$$\mathcal{I} = \langle (M_\alpha, =_\alpha)_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle$$

$$(M_o = \{a \mid a \in L\}, \leftrightarrow) \quad (M_\epsilon = \{u \mid \varphi(u)\}, =_\epsilon)$$

$$(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_o \rightarrow M_o\}, =_{oo})$$

$$(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_\epsilon \rightarrow M_o\}, =_{o\epsilon})$$

$$(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_\epsilon \rightarrow M_\epsilon\}, =_{\epsilon\epsilon}), \ldots$$

$$\vdots$$

$$(M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_\alpha \rightarrow M_\beta\}, =_{\beta\alpha})$$
Semantics – frame

Frame \mathcal{M}

$$\mathcal{I} = \langle (M_\alpha, =_\alpha)_{\alpha \in \text{Types}}, \mathcal{L}_\Delta \rangle$$

$$(M_o = \{ a \mid a \in L \}, \leftrightarrow) \quad (M_\epsilon = \{ u \mid \varphi(u) \}, =_\epsilon)$$

$$(M_{oo} \subseteq \{ g_{oo} \mid g_{oo} : M_o \to M_o \}, =_{oo})$$

$$(M_{o\epsilon} \subseteq \{ f_{o\epsilon} \mid f_{o\epsilon} : M_\epsilon \to M_o \}, =_{o\epsilon})$$

$$(M_{\epsilon\epsilon} \subseteq \{ f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_\epsilon \to M_\epsilon \}, =_{\epsilon\epsilon}), \ldots$$

$$\vdots$$

$$(M_{\beta\alpha} \subseteq \{ f_{\beta\alpha} \mid f_{\beta\alpha} : M_\alpha \to M_\beta \}, =_{\beta\alpha})$$

$$\vdots$$
Interpretation

\[\mathcal{I}^M(A_{\beta\alpha}) = f_{\beta\alpha} \in M_{\beta\alpha} \subseteq M^{M_{\alpha}}_{\beta} \]

Interpretation of formulas \(A_{\beta\alpha} \): functions \(M_{\alpha} \rightarrow M_{\beta} \)

Example

- \(\mathcal{I}^M(A_o) \in L \) – a truth value
- \(\mathcal{I}^M(A_{o\epsilon}) \) — fuzzy set in \(M_{\epsilon} \)
- \(\mathcal{I}^M(A_{(o\beta)\alpha}) \) — fuzzy relation in \(M_{\alpha} \times M_{\beta} \)
- \(\mathcal{I}^M(\iota_{\alpha(o\alpha)}) \) — defuzzification operation
- \(\mathcal{I}^M(\Delta A_o) \in \{0, 1\} \) – crisp truth value
Interpretation

\[I^M(A_{\beta\alpha}) = f_{\beta\alpha} \in M_{\beta\alpha} \subseteq M^M_{\beta\alpha} \]

Interpretation of formulas \(A_{\beta\alpha} \): functions \(M_{\alpha} \to M_{\beta} \)

Example

- \(I^M(A_o) \in L \) — a truth value
- \(I^M(A_{o\epsilon}) \) — fuzzy set in \(M_\epsilon \)
- \(I^M(A_{(o\beta)\alpha}) \) — fuzzy relation in \(M_\alpha \times M_\beta \)
- \(I^M(\iota_{\alpha(o\alpha)}) \) — defuzzification operation
- \(I^M(\Delta A_o) \in \{0, 1\} \) — crisp truth value
Interpretation

$$\mathcal{I}^M(A_{\beta\alpha}) = f_{\beta\alpha} \in M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$$

Interpretation of formulas $A_{\beta\alpha}$: functions $M_{\alpha} \rightarrow M_{\beta}$

Example

- $\mathcal{I}^M(A_o) \in L$ – a truth value
- $\mathcal{I}^M(A_{o\epsilon})$ — fuzzy set in M_{ϵ}
- $\mathcal{I}^M(A_{(o\beta)\alpha})$ — fuzzy relation in $M_{\alpha} \times M_{\beta}$
- $\mathcal{I}^M(\iota_{\alpha(o\alpha)})$ — defuzzification operation
- $\mathcal{I}^M(\Delta A_o) \in \{0, 1\}$ – crisp truth value
Interpretation

\[\mathcal{I}^M(A_{\beta\alpha}) = f_{\beta\alpha} \in M_{\beta\alpha} \subseteq M_{\beta}^M \]

Interpretation of formulas \(A_{\beta\alpha} \): functions \(M_{\alpha} \rightarrow M_{\beta} \)

Example

- \(\mathcal{I}^M(A_o) \in L \) – a truth value
- \(\mathcal{I}^M(A_{o\epsilon}) \) — fuzzy set in \(M_{\epsilon} \)
- \(\mathcal{I}^M(A_{(o\beta)\alpha}) \) — fuzzy relation in \(M_{\alpha} \times M_{\beta} \)
- \(\mathcal{I}^M(\iota_{\alpha(o\alpha)}) \) — defuzzification operation
- \(\mathcal{I}^M(\Delta A_o) \in \{0, 1\} \) – crisp truth value
Interpretation

\[\mathcal{I}^M(A_{\beta\alpha}) = f_{\beta\alpha} \in M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}} \]

Interpretation of formulas \(A_{\beta\alpha} \): functions \(M_{\alpha} \to M_{\beta} \)

Example

- \(\mathcal{I}^M(A_o) \in L \) – a truth value
- \(\mathcal{I}^M(A_{o\epsilon}) \) — fuzzy set in \(M_\epsilon \)
- \(\mathcal{I}^M(A_{(o\beta)\alpha}) \) — fuzzy relation in \(M_\alpha \times M_\beta \)
- \(\mathcal{I}^M(\iota_{\alpha(o\alpha)}) \) — defuzzification operation
- \(\mathcal{I}^M(\Delta A_o) \in \{0, 1\} \) – crisp truth value
Interpretation

\[\mathcal{I}^M(A_{\beta\alpha}) = f_{\beta\alpha} \in M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}} \]

Interpretation of formulas \(A_{\beta\alpha} \): functions \(M_{\alpha} \rightarrow M_{\beta} \)

Example

- \(\mathcal{I}^M(A_o) \in L \) — a truth value
- \(\mathcal{I}^M(A_{o\epsilon}) \) — fuzzy set in \(M_{\epsilon} \)
- \(\mathcal{I}^M(A_{(o\beta)\alpha}) \) — fuzzy relation in \(M_{\alpha} \times M_{\beta} \)
- \(\mathcal{I}^M(\iota_{\alpha(o\alpha)}) \) — defuzzification operation
- \(\mathcal{I}^M(\Delta A_o) \in \{0, 1\} \) — crisp truth value
Interpretation

\[\mathcal{I}^M(A_{\beta\alpha}) = f_{\beta\alpha} \in M_{\beta\alpha} \subseteq M^M_{\beta} \]

Interpretation of formulas \(A_{\beta\alpha} \): functions \(M_\alpha \rightarrow M_\beta \)

Example

- \(\mathcal{I}^M(A_o) \in L \) – a truth value
- \(\mathcal{I}^M(A_o\epsilon) \) — fuzzy set in \(M_\epsilon \)
- \(\mathcal{I}^M(A_{o\beta}) \) — fuzzy relation in \(M_\alpha \times M_\beta \)
- \(\mathcal{I}^M(\iota_{o\alpha}) \) — defuzzification operation
- \(\mathcal{I}^M(\Delta A_o) \in \{0, 1\} \) – crisp truth value
Logical axioms

17 axioms

- **Equality axioms**

 (FT1) $\Delta(x_\alpha \equiv y_\alpha) \Rightarrow (f_{\beta \alpha} x_\alpha \equiv f_{\beta \alpha} y_\alpha)$

- **Truth values axioms**

 (FT6) $(x_o \equiv y_o) \equiv ((x_o \Rightarrow y_o) \land (y_o \Rightarrow x_o))$

- **Delta axioms**

 (FT5) $(g_{oo}(\Delta x_o) \land g_{oo}(\neg \Delta x_o)) \equiv (\forall y_o)g_{oo}(\Delta y_o)$

- **Predicate axiom**

 (FT16) $(\forall x_\alpha)(A_o \Rightarrow B_o) \Rightarrow (A_o \Rightarrow (\forall x_\alpha)B_o)$

 x_α is not free in A_o

- **Axiom of descriptions**

 (FT17) $\iota_{\epsilon(o\epsilon)}(E_{(o\epsilon)\epsilon} y_\epsilon) \equiv y_\epsilon$
Inference rules and provability

Rule (R)

Let $A_\alpha \equiv A'_\alpha$ and $B \in \text{Form}_o$. Then we infer B' where B' comes from B by replacing one occurrence of A_α, which is not preceded by λ, by A'_α.

Rule (N)

Let $A_o \in \text{Form}_o$ be a formula. Then from A_o infer ΔA_o.

Formal theory T of FTT is a set of formulas of type o.

Standard provability
Inference rules and provability

Rule (R)

Let $A_\alpha \equiv A'_\alpha$ and $B \in \text{Form}_o$. Then we infer B' where B' comes from B by replacing one occurrence of A_α, which is not preceded by λ, by A'_α.

Rule (N)

Let $A_o \in \text{Form}_o$ be a formula. Then from A_o infer ΔA_o.

Formal theory T of FTT is a set of formulas of type o.

Standard provability
Inference rules and provability

Rule (R)

Let $A_\alpha \equiv A'_\alpha$ and $B \in \text{Form}_o$. Then we infer B' where B' comes from B by replacing one occurrence of A_α, which is not preceded by λ, by A'_α.

Rule (N)

Let $A_o \in \text{Form}_o$ be a formula. Then from A_o infer ΔA_o.

Formal theory T of FTT is a set of formulas of type o

Standard provability
Completeness

Theorem

(a) A theory T of fuzzy type theory is consistent iff it has a general model M.

(b) For every theory T of the fuzzy type theory and a formula A_o

$$T \vdash A_o \iff T \models A_o.$$

Claim

All essential properties of vague predicates are formally expressible in FTT and so, they have a many-valued model.
Completeness

Theorem

(a) A theory T of fuzzy type theory is consistent iff it has a general model M.

(b) For every theory T of the fuzzy type theory and a formula A_o

\[T \vdash A_o \iff T \models A_o. \]

Claim

All essential properties of vague predicates are formally expressible in FTT and so, they have a many-valued model.
Completeness

Theorem

(a) A theory T of fuzzy type theory is consistent iff it has a general model \mathcal{M}.

(b) For every theory T of the fuzzy type theory and a formula A_o

$$T \vdash A_o \iff T \models A_o.$$

Claim

All essential properties of vague predicates are formally expressible in FTT and so, they have a many-valued model.
We construct a formal theory T^E_v in the language of FTT formalizing general 6 characteristics

All properties are consequences of 11 special axioms of T^E_v

Formal syntactical proofs of all properties!
We construct a formal theory T^{Ev} in the language of FTT formalizing general 6 characteristics

All properties are consequences of 11 special axioms of T^{Ev}

Formal syntactical proofs of all properties!
We construct a formal theory T^{Ev} in the language of FTT formalizing general 6 characteristics

All properties are consequences of 11 special axioms of T^{Ev}

Formal syntactical proofs of all properties!
Axioms of T^{Ev}

(EV1) $(\exists z)\Delta(\neg z \equiv z)$

(EV2) $(\bot \equiv w^{-1}\bot_w) \land (\dagger \equiv w^{-1}\dagger_w) \land (\top \equiv w^{-1}\top_w)$

(EV3) $t \sim t$

(EV4) $t \sim u \equiv u \sim t$

(EV5) $t \sim u \land u \sim z \Rightarrow t \sim z$

(EV6) $\neg(\bot \sim \dagger)$

(EV7) $\Delta((t \Rightarrow u) \land (u \Rightarrow z)) \Rightarrow \cdot t \sim z \Rightarrow t \sim u$

(EV8) $t \equiv t' \land z \equiv z' \Rightarrow \cdot t \sim z \Rightarrow t' \sim z'$

(EV9) $(\exists u)\hat{\Upsilon}(\bot \sim u) \land (\exists u)\hat{\Upsilon}(\dagger \sim u) \land (\exists u)\hat{\Upsilon}(\top \sim u)$

(EV10) $NatHedge \nu \land (\exists \nu')(\exists \nu')(Hedge \nu \land Hedge \nu' \land (\nu_1 \leq \nu \land \nu \leq \nu_2))$

(EV11) $(\forall z)((\gamma \nu(LH z)) \lor (\gamma \nu(MH z)) \lor (\gamma \nu(RH z)))$
Axioms of \mathcal{T}^{Ev}

(EV1) $(\exists z)\Delta(\neg z \equiv z)$

(EV2) $(\bot \equiv w^{-1}\bot_w) \land (\dagger \equiv w^{-1}\dagger_w) \land (\top \equiv w^{-1}\top_w)$

(EV3) $t \sim t$

(EV4) $t \sim u \equiv u \sim t$

(EV5) $t \sim u \land u \sim z \Rightarrow t \sim z$

(EV6) $\neg(\bot \sim \dagger)$

(EV7) $\Delta((t \Rightarrow u) \land (u \Rightarrow z)) \Rightarrow t \sim z \Rightarrow t \sim u$

(EV8) $t \equiv t' \land z \equiv z' \Rightarrow t \sim z \Rightarrow t' \sim z'$

(EV9) $(\exists u)\hat{\Upsilon}(\bot \sim u) \land (\exists u)\hat{\Upsilon}(\dagger \sim u) \land (\exists u)\hat{\Upsilon}(\top \sim u)$

(EV10) $\text{NatHedge} \bar{\nu} \land (\exists \nu)(\exists \nu')(\text{Hedge} \nu \land \text{Hedge} \nu' \land (\nu_1 \leq \bar{\nu} \land \bar{\nu} \leq \nu_2))$

(EV11) $(\forall z)(((\gamma \bar{\nu}(LH z)) \lor (\gamma \bar{\nu}(MH z)) \lor (\gamma \bar{\nu}(RH z))))$
Axioms of T^{Ev}

(EV1) $\exists z \Delta (\neg z \equiv z)$

(EV2) $(\bot \equiv w^{-1} \bot_w) \land (\uparrow \equiv w^{-1} \uparrow_w) \land (\top \equiv w^{-1} \top_w)$

(EV3) $t \sim t$

(EV4) $t \sim u \equiv u \sim t$

(EV5) $t \sim u \land u \sim z \Rightarrow t \sim z$

(EV6) $\neg (\bot \sim \uparrow)$

(EV7) $\Delta((t \Rightarrow u) \land (u \Rightarrow z)) \Rightarrow \cdot t \sim z \Rightarrow t \sim u$

(EV8) $t \equiv t' \land z \equiv z' \Rightarrow \cdot t \sim z \Rightarrow t' \sim z'$

(EV9) $\exists u \hat{\Upsilon}(\bot \sim u) \land (\exists u \hat{\Upsilon}(\uparrow \sim u) \land (\exists u \hat{\Upsilon}(\top \sim u)$

(EV10) $NatHedge \bar{v} \land (\exists v)(\exists v')(Hedge v \land Hedge v' \land (v_1 \leq \bar{v} \land \bar{v} \leq v_2))$

(EV11) $\forall z((\gamma \bar{v}(LHZ)) \lor (\gamma \bar{v}(MHZ)) \lor (\gamma \bar{v}(RHZ)))$
Context

(A) Nonempty, linearly ordered and bounded scale, three distinguished limit points: *left bound, right bound, and a central point*

Context \(w_{\alpha_0} \) \(\mathcal{I}(w_{\alpha_0}) = w : [0, 1] \rightarrow M: \)

\[
\begin{align*}
 w(0) &= v_L \
 w(0.5) &= v_S \
 w(1) &= v_R
\end{align*}
\]

(\text{left bound}) \hspace{2cm} (\text{central point}) \hspace{2cm} (\text{right bound})

Set of contexts \(W = \{ w \mid w : [0, 1] \rightarrow M \} \)

Linear ordering \(\leq_w \) in each context \(w \)
Context

(A) Nonempty, linearly ordered and bounded scale, three distinguished limit points: *left bound*, *right bound*, and a *central point*

Context \(w_{\alpha_0} \) \(\mathcal{I}(w_{\alpha_0}) = w : [0, 1] \rightarrow M: \)

\[
\begin{align*}
 w(0) &= v_L & \text{(left bound)} \\
 w(0.5) &= v_S & \text{(central point)} \\
 w(1) &= v_R & \text{(right bound)}
\end{align*}
\]

Set of contexts \(W = \{ w \mid w : [0, 1] \rightarrow M \} \)

Linear ordering \(\leq_w \) in each context \(w \)
Intension

(\textbf{B}) Function from the set of contexts into a set of fuzzy sets

\[\text{Int}(\mathcal{A}) = \lambda w \lambda x (Aw)x \quad \mathcal{I}(\text{Int}(\mathcal{A})) : \mathcal{W} \rightarrow \mathcal{F}(w([0, 1])) \]
Intension

(B) Function from the set of contexts into a set of fuzzy sets

\[\text{Int}(A) = \lambda w \lambda x (Aw) x \]

\[\mathcal{I}(\text{Int}(A)) : W \rightarrow \mathcal{F}(\mathcal{w}([0, 1])) \]

Scheme of intension
(C) Each of the limit points is a starting point of some horizon running from it in the sense of the ordering of the scale towards the next limit point (the horizon vanishes beyond)
(C) Each of the limit points is a starting point of some *horizon* running from it in the sense of the ordering of the scale towards the next limit point (the horizon vanishes beyond)
We introduce a special fuzzy equality \sim on the set $[0, 1]$ of truth values

Example

Standard Łukasiewicz MV-algebra of truth values:

$$[a \sim b] = \frac{0.5 - |a - b|}{0.5}.$$

Fuzzy equality induced by \sim

$$y \approx_w y' := \text{iff } w^{-1}y \sim w^{-1}y', \quad x, y \in w$$
Three horizons

\[LH(a) = [0 \sim a], \quad LH(w \ x) = [v_L \approx_w x] \]
\[MH(a) = [0.5 \sim a], \quad MH(w \ x) = [v_S \approx_w x] \]
\[RH(a) = [1 \sim a], \quad RH(w \ x) = [v_R \approx_w x] \]
(D) Each horizon is represented by a special fuzzy set determined by a reasoning analogous to that leading to the sorites paradox.

Sorites paradox
One grain does not make a heap. Adding one grain to what is not yet a heap does not make a heap. Consequently, there are no heaps.

Falakros paradox
A man with no hair is bald. A man with one hair more than a bald man is still bald. Consequently, all men are bald.
Properties of horizon

(D) Each horizon is represented by a special fuzzy set determined by a reasoning analogous to that leading to the sorites paradox.

Sorites paradox
One grain does not make a heap. Adding one grain to what is not yet a heap does not make a heap. Consequently, there are no heaps.

Falakros paradox
A man with no hair is bald. A man with one hair more than a bald man is still bald. Consequently, all men are bald.
Properties of horizon

(D) Each horizon is represented by a special fuzzy set determined by a reasoning analogous to that leading to the sorites paradox.

Sorites paradox
One grain does not make a heap. Adding one grain to what is not yet a heap does not make a heap. Consequently, there are no heaps.

Falakros paradox
A man with no hair is bald. A man with one hair more than a bald man is still bald. Consequently, all men are bald.
Sorites in fuzzy logic

New predicate $\mathbb{F}_N(n)$: “n is small”; “n is feasible”; “n is finite”

Axioms

- “there is a small number” — valid
- “if n is small then $n + 1$ is also small” — practically valid!
- “there is a number not being small” — valid

No contradiction!
(possible in classical logic)
Sorites in fuzzy logic

New predicate $\mathbb{FN}(n)$: “n is small”; “n is feasible”; “n is finite”

Axioms

- “there is a small number” — valid
- “if n is small then $n + 1$ is also small” — practically valid!
- “there is a number not being small” — valid

No contradiction!
(Impossible in classical logic)
New predicate $\text{FN}(n)$: “n is small”; “n is feasible”; “n is finite”

Axioms

- “there is a small number” — valid
- “if n is small then $n + 1$ is also small” — practically valid!
- “there is a number not being small” — valid

No contradiction!

(Impossible in classical logic)
Sorites in fuzzy logic

New predicate $\text{FN}(n)$: “n is small”; “n is feasible”; “n is finite”

Axioms

- “there is a small number” — valid
- “if n is small then $n + 1$ is also small” — practically valid!
- “there is a number not being small” — valid

No contradiction!
(Impossible in classical logic)
Sorites in fuzzy logic

New predicate $\text{FN}(n)$: “n is small”; “n is feasible”; “n is finite”

Axioms

- “there is a small number” — valid
- “if n is small then $n + 1$ is also small” — practically valid!
- “there is a number not being small” — valid

No contradiction!
(Impossible in classical logic)
Sorites in the theory of TEv-expression

Special context w_N:

$$\nu_L = 0, \quad \nu_S = p, \quad \nu_R = q$$

\approx_{w_N} – induced fuzzy equality in the context w_N

$$FN := \lambda n \cdot 0 \approx_{w_N} n$$

Finite numbers do not form a heap

Interpretation: fuzzy set

$$FN(n) = [0 \approx_{w_N} n]$$
Sorites in the theory of TEv-expression

Special context w_N:

\[\nu_L = 0, \quad \nu_S = p, \quad \nu_R = q \]

\approx_{w_N} – induced fuzzy equality in the context w_N

\[FN := \lambda n \cdot 0 \approx_{w_N} n \]

Finite numbers do not form a heap

Interpretation: fuzzy set \[FN(n) = [0 \approx_{w_N} n] \]
Sorites in the theory of TEv-expression

Special context \(w_N \):

\[
\nu_L = 0, \quad \nu_S = p, \quad \nu_R = q
\]

\(\approx_{w_N} \) – induced fuzzy equality in the context \(w_N \)

\[
\mathcal{FN} := \lambda n \cdot 0 \approx_{w_N} n
\]

Finite numbers do not form a heap

Interpretation: fuzzy set \(\mathcal{FN}(n) = [0 \approx_{w_N} n] \)
Sorites in the theory of TEv-expression

Theorem

(a) \(\vdash \Delta FN 0, \)

(b) \(\vdash n \in w_N \& \Delta(p \leq n) \Rightarrow \neg FN n \)

(c) \(\vdash m \in w_N \& n \in w_N \& \Delta(m \leq n) \Rightarrow (FNn \Rightarrow FNm) \)

(d) \(\vdash \neg(\exists n)(n \in w_N \& \Delta FN n \& \Delta \neg FN(n + 1)) \)

(e) \(\vdash n \in w_N \Rightarrow (FNn \Rightarrow (n \approx w_N n + 1) \Rightarrow FN(n + 1)) \)
Sorites in the theory of TEv-expression

Theorem

(a) \(\vdash \Delta FN 0 \),

(b) \(\vdash n \in w_N \& \Delta (p \leq n) \Rightarrow \neg FN n \)

(c) \(\vdash m \in w_N \& n \in w_N \& \Delta (m \leq n) \Rightarrow (FN n \Rightarrow FN m) \)

(d) \(\vdash \neg (\exists n)(n \in w_N \& \Delta FN n \& \Delta \neg FN (n + 1)) \)

(e) \(\vdash n \in w_N \Rightarrow (FN n \Rightarrow (n \approx_{w_N} n + 1) \Rightarrow FN (n + 1)) \)
Sorites in the theory of TEv-expression

Theorem

(a) \(\vdash \Delta FN 0, \)

(b) \(\vdash n \in w_N \land \Delta(p \leq n) \Rightarrow \neg FN n \)

(c) \(\vdash m \in w_N \land n \in w_N \land \Delta(m \leq n) \Rightarrow (FN n \Rightarrow FN m) \)

(d) \(\vdash \neg(\exists n)(n \in w_N \land \Delta FN n \land \Delta \neg FN(n + 1)) \)

(e) \(\vdash n \in w_N \Rightarrow (FN n \Rightarrow n \approx w_N n + 1 \Rightarrow FN(n + 1)) \)
Sorites in the theory of TEv-expression

Theorem

(a) \(\vdash \Delta \text{FN} 0 \),
(b) \(\vdash n \in w_N \& \Delta (p \leq n) \Rightarrow \neg \text{FN} n \)
(c) \(\vdash m \in w_N \& n \in w_N \& \Delta (m \leq n) \Rightarrow (\text{FN} n \Rightarrow \text{FN} m) \)
(d) \(\vdash \neg (\exists n)(n \in w_N \& \Delta \text{FN} n \& \Delta \neg \text{FN} (n + 1)) \)
(e) \(\vdash n \in w_N \Rightarrow (\text{FN} n \Rightarrow (n \approx_{w_N} n + 1) \Rightarrow \text{FN} (n + 1)) \)
Sorites in the theory of TEv-expression

Theorem

(a) ⊢ ΔFN 0,

(b) ⊢ n ∈ w_N & Δ(p ≤ n) ⇒ ¬FN n

(c) ⊢ m ∈ w_N & n ∈ w_N & Δ(m ≤ n) ⇒ (FN n ⇒ FN m)

(d) ⊢ ¬(∃n)(n ∈ w_N & ΔFN n & Δ¬FN(n + 1))

(e) ⊢ n ∈ w_N ⇒ (FN n ⇒ (n ≈_{w_N} n + 1) ⇒ FN(n + 1))
Hedge: shift of the horizon

(E) Extension of each TEv-expression is delineated by modification (shifting) of the horizon
Modification: linguistic hedge

Hedges — horizon modifications

ν : [0, 1] → [0, 1]
Hedge: shift of the horizon

(E) Extension of each TEv-expression is delineated by modification (shifting) of the horizon
Modification: linguistic hedge

Hedges — horizon modifications

\[\nu : [0, 1] \rightarrow [0, 1] \]
Each scale is vaguely partitioned by the fundamental evaluative trichotomy
Intensions of evaluative predications

\langle \text{linguistic hedge} \rangle \mapsto \nu

- \text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ small}) :=
 \[Sm\nu = \lambda w \lambda x \cdot \nu(LH(w^{-1}x)) \]

- \text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ medium}) :=
 \[Me\nu = \lambda w \lambda x \cdot \nu(MH(w^{-1}x)) \]

- \text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ big}) :=
 \[Bi\nu = \lambda w \lambda x \cdot \nu(RH(w^{-1}x)) \]

\text{Extension} of an evaluative predication in the context \(w \)

\((Ev\nu)w \subseteq w([0, 1])\)
Intensions of evaluative predications

\langle \text{linguistic hedge} \rangle \mapsto \nu

- \text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ small}) :=
 \begin{align*}
 Sm_{\nu} &= \lambda w \lambda x \cdot \nu(LH(w^{-1}x))

 \text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ medium}) :=
 \begin{align*}
 Me_{\nu} &= \lambda w \lambda x \cdot \nu(MH(w^{-1}x))

 \text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ big}) :=
 \begin{align*}
 Bi_{\nu} &= \lambda w \lambda x \cdot \nu(RH(w^{-1}x))

 \text{Extension of an evaluative predication in the context } w
 \begin{align*}
 (Ev_{\nu})w &\subset \sim w([0, 1])

 IRAFM
Intensions of evaluative predications

\[\langle \text{linguistic hedge} \rangle \mapsto \nu \]

- \(\text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ small}) := \)
 \[Sm_\nu = \lambda w \lambda x \cdot \nu(LH(w^{-1}x)) \]

- \(\text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ medium}) := \)
 \[Me_\nu = \lambda w \lambda x \cdot \nu(MH(w^{-1}x)) \]

- \(\text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ big}) := \)
 \[Bi_\nu = \lambda w \lambda x \cdot \nu(RH(w^{-1}x)) \]

Extension of an evaluative predication in the context \(w \)

\[(Ev_\nu)w \subseteq w([0, 1]) \]
Intensions of evaluative predications

\(\langle \text{linguistic hedge} \rangle \mapsto \nu \)

- \(\text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ small}) := \)
 \[Sm \nu = \lambda w \lambda x \cdot \nu(LH(w^{-1}x)) \]
- \(\text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ medium}) := \)
 \[Me \nu = \lambda w \lambda x \cdot \nu(MH(w^{-1}x)) \]
- \(\text{Int}(X \text{ is } \langle \text{linguistic hedge} \rangle \text{ big}) := \)
 \[Bi \nu = \lambda w \lambda x \cdot \nu(RH(w^{-1}x)) \]

Extension of an evaluative predication in the context \(w \)

\((Ev\nu)_w \subseteq w([0, 1]) \)
Fundamental evaluative trichotomy

Intensions of “small” and “big” have in each context the basic property of antonyms

Theorem

For all \(w \) and \(x \in w \)

\[\vdash \Delta \neg((Smw) x \land (Biw)x) \]

Each context is fully covered by the fundamental evaluative trichotomy

Theorem

For all \(w \) and \(x \in w \)

\[\vdash (Evalw x Sm) \lor (Evalw x Me) \lor (Evalw x Sm) \]
Fundamental evaluative trichotomy

Intensions of “small” and “big” have in each context the basic property of antonyms

Theorem

For all w and $x \in w$

$$\vdash \Delta \neg((\overline{Sm} w) x \land (\overline{Bi} w) x)$$

Each context is fully covered by the fundamental evaluative trichotomy

Theorem

For all w and $x \in w$

$$\vdash (Eval w x \overline{Sm}) \lor (Eval w x \overline{Me}) \lor (Eval w x \overline{Sm})$$
Fundamental evaluative trichotomy

Intensions of “small” and “big” have in each context the basic property of antonyms

Theorem

For all \(w \) and \(x \in w \)

\[\vdash \Delta \neg((\overline{Sm} w) x \land (\overline{Bi} w) x) \]

Each context is fully covered by the fundamental evaluative trichotomy

Theorem

For all \(w \) and \(x \in w \)

\[\vdash (Eval w x \overline{Sm}) \lor (Eval w x \overline{Me}) \lor (Eval w x \overline{Sm}) \]
Fundamental evaluative trichotomy

Intensions of “small” and “big” have in each context the basic property of antonyms

Theorem
For all \(w \) and \(x \in w \)

\[\vdash \Delta \neg ((\overline{Sm} w) x \land (\overline{Bi} w) x) \]

Each context is fully covered by the fundamental evaluative trichotomy

Theorem
For all \(w \) and \(x \in w \)

\[\vdash (Eval w x \overline{Sm}) \lor (Eval w x \overline{Me}) \lor (Eval w x \overline{Sm}) \]
Vagueness of “small” and “big”

Theorem

No last small natural number

\[\vdash \neg (\exists n)(n \in w_N \land \Delta(Sm \nu) w_N n \land \Delta \neg (Sm \nu) w_N (n + 1)) \]

Theorem

- **There is no last small value**
 \[\vdash \neg (\exists x)(\forall y)(\Delta(Sm \nu) w x \land (x <_w y \Rightarrow \Delta \neg (Sm \nu) w y)) \]

- **There is no first big value**
 \[\vdash \neg (\exists x)(\forall y)(\Delta(Bi \nu) w x \land (y <_w x \Rightarrow \Delta \neg (Bi \nu) w y)) \]

Theorem

Formal theory \(T^{Ev} \) of evaluative linguistic expressions is consistent
Vagueness of “small” and “big”

Theorem

No last small natural number

\[\vdash \neg (\exists n)(n \in w_N \& \Delta(Sm_v)w_Nn \& \Delta \neg (Sm_v)w_N(n + 1)) \]

Theorem

- **There is no last small value**
 \[\vdash \neg (\exists x)(\forall y)(\Delta(Sm_v)wx \& (x <_w y \Rightarrow \Delta \neg (Sm_v)wy)) \]

- **There is no first big value**
 \[\vdash \neg (\exists x)(\forall y)(\Delta(Bi_v)wx \& (y <_w x \Rightarrow \Delta \neg (Bi_v)wy)) \]

Theorem

Formal theory \(T^{Ev} \) of evaluative linguistic expressions is consistent
Vagueness of “small” and “big”

Theorem

No last small natural number
⊢ ¬(∃n)(n ∈ wN & ∆(Sm ν)wNn & ∆¬(Sm ν)wN(n + 1))

Theorem

There is no last small value
⊢ ¬(∃x)(∀y)(∆(Sm ν)wx & (x <w y ⇒ ∆¬(Sm ν)wy))

There is no first big value
⊢ ¬(∃x)(∀y)(∆(Bi ν)wx & (y <w x ⇒ ∆¬(Bi ν)wy))

Theorem

Formal theory T_{Ev} of evaluative linguistic expressions is consistent
Vagueness of “small” and “big”

Theorem

No last small natural number
\[\vdash \neg (\exists n)(n \in w_N \& \Delta(Sm \nu)w_N n \& \Delta \neg (Sm \nu)w_N (n + 1)) \]

Theorem

- There is no last small value
 \[\vdash \neg (\exists x)(\forall y)(\Delta(Sm \nu)wx \& (x <_w y \Rightarrow \Delta \neg (Sm \nu)wy)) \]
- There is no first big value
 \[\vdash \neg (\exists x)(\forall y)(\Delta(Bi \nu)wx \& (y <_w x \Rightarrow \Delta \neg (Bi \nu)wy)) \]

Theorem

Formal theory \(T^{Ev} \) of evaluative linguistic expressions is consistent