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Notes: Wikipedia on some important notions relevant to reading this paper:

i.i.d. = independent and identically distributed : Used about a sequence or other collection of random variables
in which each random variable has the same probability distribution as the others and all are mutually
independent. One of the simplest statistical tests, the z-test, is used to test hypotheses about means of
random variables. When using the z-test, one assumes (requires) that all observations are i.i.d. in order to
satisfy the conditions of the central limit theorem, which states that the probability distribution of the sum
(or average) of i.i.d. variables with �nite variance approaches a normal distribution. Note that sampling
without replacement is not independent, but is exchangeable�the joint probability distribution is invariant
under permutation.
paired di�erence test compares two sets of measurements to assess whether their population means di�er,
using additional information about the sample that is not present in an ordinary unpaired testing situation,
either to increase the statistical power, or to reduce the e�ects of confounders�usually, it is a "repeated
measures" test that compares measurements within subjects (i.e. before and after treatment or, in this paper,
under two di�erent treatments) or a test in which subjects in both groups are paired by similar characteristics.
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where n is the sample size and σ1 and σ2 are the population standard deviations of the Xi1 and Xi2 data,
respectively. Note that the variance of D is lower if there is positive correlation within each pair. This
explaines why, in the paper, a metric gain is more signi�cant between systems with correlated output.
Types of tests for the di�erence of the means include:

• Paired tests basically reduce the question to single sample tests for the variable Xi = Xi1 −Xi2:
� paired Z-test: for normally distributed di�erences where the population deviation of di�erence is

known to be s (and hence the Z-statistic (approximately) follows a normal distribution)

Z =
X1 −X2

s√
n

The Z test can also be used if the sample size is large (n>50). In that case, the sample variance is
used as an estimate of the population variance:

s2 ≈ Σ(Xi −X)2

n− 1
.

� paired Student's t-test: for normally distributed di�erences where the population standard deviation
of di�erence is not known. The t-statistic is compared to the t-distribution with df degrees of
freedom.

t =
X1 −X2

s√
n

,

df = n− 1,

where s is the sample standard deviation of the di�erences.

� Wilcoxon signed-rank test for di�erences that may not be normally distributed but are symmetri-
cally distributed around the median. We assume that for all pairs there is a non-zero di�erence,
order these di�erences by their absolute values and assign rank R = i to the i-th pair; ties receive
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a rank equal to the average of the ranks they span. The test statistic is calculated as

W =
∣∣Σ[sgn(Xi1 −Xi2) ·Ri]

∣∣.
The p-value can be calculated from the enumeration of all possible combinations of W given n; al-
ternatively,W is approximately normally distributed for n > 10, so that a Z-test can be performed,
using

Z =
W − 0.5

σW
,

σW =

√
n(n+ 1)(2n+ 1)

6
.

• Unpaired tests that assume homogeneity of variance (i.e. that the variance of the two samples is the
same).

� Unpaired t-test for samples from normal distributions with a same yet unknown variance.

t =
X1 −X2

s2p

√
1
n1

+ 1
n2

,

df = n1 + n2 − 2,

where sp is the pooled standard deviation and the pooled variance is calculated as

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.

• Unpaired tests that do not assume homogeneity of variance, i.e. can cope with samples taken from
populations with di�erent variances:

� Welch's unequal variance t-test is an adaptation of Student's t-test which makes use of unpooled
variance (in the denominator of the formula for t) and is robust to violation of homogeneity of
variance across samples. It assumes that both samples are taken from normal distributions. It
computes the t statistic and the degrees of freedom df di�erently, but uses the same family of
t-distributions to obtain a p-value and test the null hypothesis (using a one-tailed or a two-tailed
test). [Ruxton06unequal] suggests to use this test even if the homogeneity of variance assumption
would possibly hold (because testing for it can only introduce further errors).
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where Xi, s
2
1 and ni are the sample mean, sample variance and sample size and νi = ni − 1 is the

degrees of freedom associated with the ith variance estimate. Note that df does not have to be an
integer;

min(n1 − 1, n2 − 1) < df < n1 + n2 − 2

so the df is smaller than it would be in the usual "pooled" t-test.

Notes from the article itself

[1] For the following analyses, pairs are compared so that δ(x) is always positive.

• hypothesis testing : when a system A outperforms system B on a sample x = x1, . . . xn by δ(x), we want
to estimate the probability that on a di�erent test set x′ shows a similar victory assuming that in fact
A is no better than B, i.e. we want to estimate p(δ(X) > δ(x)|H0) = p(x), where X ranges over all test
sets of size n. To estimate the p-value, methods such as paired Student's t-test or paired bootstrap can
be used.

• bootstrap: having a sample x of the population, we draw many new samples x(i) of size n (with replace-
ment, so that the sampling is i.i.d.). We estimate p(δ(X) > δ(x)|H0) as the percentage of x(i) for which
δ(x(i)) > 2∗δ(x). (Under H0 that A does not in fact outperform B, we assume that the mean bootstrap
gain is equal to the original test gain because we are subsampling a set on which A accidentally outper-
forms B.) In case the distribution is symmetric about δ(x), and the mean of δ(x(i)) is equal to δ(x)),
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this is equivalent to considering the proportion of bootstrap samples that give δ(x(i)) < 0. In particular,
E(δ(x(i))) = δ(x) whenever the metric linearly decomposes over sample items (sentences), and by the
central limit theorem, the distribution is symmetric whenever the sample size n is large.

• A major bene�t of the bootstrap is that any evaluation metric can be used to compute δ(x)�it does not
even have to decompose over sentences (which we would need for any variation of the t-test approach).

• In designing a shared task it is important to know how large the test set must be in order for signi�cance
tests to be sensitive to small gains in the performance metric.

• For a �xed test size, the domain has only a small e�ect on the shape of the curve.

• conventional wisdom: a certain metric gain is roughly the point of signi�cance for a given task (i.e. 0.4
F1 in parsing or 0.5 BLEU in MT)�the authors con�rm that, when such rules of thumb are determined
for a given test set (with �xed size and domain), they are fairly accurate. However, the larger the corpus
size, the lower the threshold for p < 0.05.

• More similar systems tend to achieve signi�cance with smaller metric gains, because their output is
more correlated and hence the variance of the di�erences is smaller (and thus the testing statistics has
larger absolute value and p is smaller).

• The authors propose a simple method for automatically generating arbitrary numbers of comparable
system outputs: create new training sets by sampling the original training set with replacement. They
validate the trends revealed by the synthetic method against data from public competitions.

• Extent to which statistical signi�cance on a test corpus is predictive of performance on other test
corpora�when the test set is i.i.d. drawn from the same distribution that generates the new data, the
signi�cance levels are well-calibrated, but as the domain of the new data diverges, the predictive ability
of signi�cance drops dramatically. E.g., for constituency parsing, when testing on section 23 of the WSJ
corpus, p < 0.00125 is required to reasonably predict performance on the Brown corpus.

• Rules of thumb obtained by the authors:
task metric threshold

for
related
systems

threshold
for un-
related
systems

used test set from sample size

summarization ROUGE 1.10 TAC 2008 t.s. 48 document
collections

dep. parsing unlabeled
dep. acc.

1.20 1.51 CoNLL 2007
Chinese t.s.

690 sentences

MT BLEU 0.28 0.37 German-English
WMT 2010 news t.s.

2034 sentences

word
alignment

AER 0.50 1.12 part of Hansard t.s. 100 sentences

constituency
parsing

F1 0.47 0.57 section 23 of WSJ

Questions for the article authors

• They said that GIZA++ failed to produce reasonable output when trained with some of these training
sets ( 20 training sets among 1.1M sentences). Why?

• Explain footnote 5.
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