
1

TextLink 2017 - explor_pdt30
Silvie Cinkova

27 January 2017

library(dplyr)
library(tidyr)
library(stringr)
library(ggplot2)
library(ggthemes)
library(plotluck)
library(scales)
library(formatR)

Data Structure
pdt30 <- readRDS("src_data/pdt_30.RDS")

Data Set at First Sight
dplyr::glimpse(pdt30)

Observations: 20,556
Variables: 6
$ document_id <fctr> cmpr9410_001, cmpr9410_001, cmpr9410_001,...
$ genre <fctr> comment, comment, comment, comment, comme...
$ number_of_sentences <int> 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33...
$ sentence_id <fctr> t-cmpr9410-001-p10s2, t-cmpr9410-001-p11s...
$ discourse_type <fctr> conc, opp, spec, restr, conj, conc, restr...
$ discourse_class <fctr> CONTRAST, CONTRAST, EXPANSION, CONTRAST, ...

Interpretation: 5 categorical variables, 1 numerical variable

summary(pdt30)

document_id genre number_of_sentences
ln94207_73 : 123 news :4510 Min. : 1.0
ln94207_76 : 118 essay :3757 1st Qu.: 16.0
ln94210_95 : 102 sport :2525 Median : 26.0
ln94211_92 : 87 description :2305 Mean : 37.3
ln94200_127: 80 comment :1731 3rd Qu.: 42.0
ln94207_79 : 77 topic_interv:1247 Max. :231.0
(Other) :19969 (Other) :4481
sentence_id discourse_type discourse_class
t-ln94203-125-p8s11 : 6 conj :7498 CONTINGENCY:4701
t-ln94207-73-p13s7 : 6 opp :3196 CONTRAST :5938
t-ln94207-90-p4s9 : 6 reason :2632 EXPANSION :8851
t-ln95048-061-p7s3 : 6 cond :1369 TEMPORAL :1066

2

t-cmpr9415-033-p11s4: 5 conc : 880
t-ln94203-99-p8s1 : 5 preced : 840
(Other) :20522 (Other):4141

Interpretation: Some levels of categorical variables and their frequency, summary of
numerical variable

str(pdt30)

Classes 'tbl_df', 'tbl' and 'data.frame': 20556 obs. of 6 variables:
$ document_id : Factor w/ 2580 levels "cmpr9410_001",..: 1 1 1 1 1
1 1 1 1 1 ...
$ genre : Factor w/ 19 levels "advice","caption",..: 4 4 4 4
4 4 4 4 4 4 ...
$ number_of_sentences: int 33 33 33 33 33 33 33 33 33 33 ...
$ sentence_id : Factor w/ 16112 levels "t-cmpr9410-001-p10s2",..:
1 2 3 4 4 5 6 6 7 8 ...
$ discourse_type : Factor w/ 23 levels "conc","cond",..: 1 16 22 21 4
1 21 4 2 16 ...
$ discourse_class : Factor w/ 4 levels "CONTINGENCY",..: 2 2 3 2 3 2 2
3 1 2 ...

Interpretation: all levels of categorical variables

Visualization

Our PDT 3.0 Subcorpus
Why "subcorpus"? Our table records observations of connectives. Therefore we do not
consider PDT30 documents where no connectives have occurred. (Maybe there are no such
texts, but for the sake of precision!) Anyway, henceforth it will be called corpus.

How Many How Long Texts Are There in the Corpus?
doclen_set <- pdt30 %>% dplyr::distinct(document_id, .keep_all = TRUE) %>%
 dplyr::select(-c(starts_with("discourse"), starts_with("sentence")))
set.seed(122)
dplyr::sample_n(doclen_set, 10)

A tibble: 10 × 3
document_id genre number_of_sentences
<fctr> <fctr> <int>
1 mf920925_116 news 7
2 mf920925_120 person_interv 52
3 ln94203_75 description 25
4 cmpr9415_018 comment 26
5 ln95045_059 news 6
6 ln95046_078 news 5
7 ln95047_120 news 13
8 cmpr9410_008 advice 64

3

9 cmpr9413_052 essay 58
10 ln95045_110 news 11

How many texts are there in the corpus?

nrow(doclen_set)

[1] 2580

We are exploring a single variable: text length. Each text is one observation of this
quantitative variable. A common diagram: histogram. X-axis: variable values, Y-axis:
frequency of such. We see the distribution of text lengths in the subcorpus.

ggplot(doclen_set, aes(x = number_of_sentences)) + geom_histogram(binwidth =
10,
 col = "black", fill = "tomato")

 The width of bins is
adjustable. "Binwidth 10" means: the first bin contains texts of length 0-9 sentences, the
second of 10-19 sentences, etc. There are somewhat less than 250 texts between 0 and 10
sentences long, 1300 texts between 10 and 20 sentences long, etc.There is a tiny number of
texts (one?) over 150 sentences long.

4

How many texts do we actually have? As many as there are levels of the document_id factor
in the pdt30 data frame, see str(pdt30) above. But how many sentences are they long?

sentsums <- dplyr::summarise(group_by(doclen_set, genre), sum(number_of_sente
nces))
colnames(sentsums)[2] <- "sumsentnumbers"
sentsums

A tibble: 19 × 2
genre sumsentnumbers
<fctr> <int>
1 advice 1501
2 caption 90
3 collection 1833
4 comment 3203
5 description 5850
6 essay 6793
7 invitation 693
8 letter 434
9 news 12537
10 other 974
11 overview 511
12 person_interv 1471
13 plot 73
14 program 146
15 review 2314
16 sport 4817
17 survey 355
18 topic_interv 2602
19 weather 105

And how many sentences long is the entire corpus?

dplyr::summarise(doclen_set, sum(number_of_sentences))

A tibble: 1 × 1
`sum(number_of_sentences)`
<int>
1 46302

5

We may anyway also want to visualize the relative frequencies of different text lengths:

ggplot(doclen_set, aes(x = number_of_sentences)) + geom_histogram(aes(x = num
ber_of_sentences,
 y = ..count../sum(..count..)), col = "black", fill = "tomato",
 binwidth = 10)

6

How Much Text Is There in the Corpus for Each Genre?
Text is calculated in length, i.e. number of sentences. This time we focus on the text bulk in
each genre, not distinguishing individual documents. We add color distinction to genres for
easier comparison with the following plots, although the colors add no information to the
barplot.

ggplot(sentsums, aes(y = sumsentnumbers, x = genre)) + geom_bar(stat = "ident
ity",
 aes(fill = genre)) + theme(axis.text.x = element_text(angle = 90)) +
 ylab("number of sentences with connectives")

BTW - What is the difference between a histogram and a barplot?

7

How Many How Long Texts Are There in the Corpus for Each Genre? (I)
Normally, the distribution of sentence_lengths of documents would be all a histogram
would be able to tell, since the y-axis always shows frequency or probability density (we
ignore this one) and there would be only one axis left to project a variable onto. Thanks to
ggplot2, however, we can add genre as a second variable, deploying color fill, which we can
regard as a "third axis". We add lines for better color distinction.

doclen_set <- pdt30 %>% distinct(document_id, .keep_all =
TRUE) %>% select(-c(starts_with('discourse'),
starts_with('sentence')))
ggplot(doclen_set, aes(x = number_of_sentences, fill = genre)) +
 geom_histogram(binwidth = 10, col = "black")

Compare e.g. the tall dark-green column of news in the barplot and the dark-green areas in
the columns in this histogram. Together, they tell us: news contribute the largest text bulk
to the corpus (barplot) and the texts are mostly short, typically between 10-20 sentences
(histogram with color mapping for genres).

8

How Many How Long Texts Are There in the Corpus for Each Genre?
(II)
The colored histogram above suffers from too many similar colors. A row of boxplots with
whiskers presents the same information textwise and in a more transparent way:

ggplot(doclen_set, aes(x = genre, y = number_of_sentences)) +
 geom_boxplot() + theme(axis.text.x = element_text(angle = 90)) +
 ylab("number of sentences with connectives")

Boxplot Interpretation: for each genre, all observations sorted from min to max. First
quartile: 25% of the observations, second quartile (median): 50% of the observations, third
quartile: 75% of the observations, fourth = maximum. Range: max-min. Box: "IQR"
(interquartile range): difference between 3rd and 1st quartile. Whiskers: 1,5*IQR. Beyond
whiskers: outliers.

Here: outliers only upwards - quite short texts occur in all genres, but the really long texts
in just a few and in even fewer genres they are common! Cf. person_interview and essay.

9

How Many Connectives Are There in the Different Texts, Genrewise?
When we clutter the boxplots above with a color-mapped additional variable, we will get a
first glimpse at how many connectives there are in the individual texts in the individual
genres.

Each tomato-colored point represents one occurrence of a connective in a document of the
length given by the y-axis. Since they are so many points that they would hide the boxplots,
we made them transparent. With the current plot parameters it takes 500 points over each
other to appear as one fully opaque point. The parameter responsible for opacity is called
alpha. We will get few opaque points in the plot, since we have also jittered them, so that
they overlap less frequently.

ggplot(pdt30, aes(x = genre, y = number_of_sentences)) + geom_boxplot() +
 geom_jitter(alpha = 5/100, col = "tomato") + theme(axis.text.x = element_
text(angle = 90))

NB, the current plot does not represent the individual texts. We may see horizontal tomato-
colored clouds and think that they all belong to the same document, but in fact they belong
to all documents within the given genre that have the same sentence length. A scatterplot
shows the individual text. We will check whether there are many documents with the same
length within a single genre.

10

ggplot(doclen_set, aes(x = genre, y = number_of_sentences)) +
 geom_point(color = "darkblue", shape = 4, position = position_jitter(heig
ht = 0,
 width = 0.3)) + theme(axis.text.x = element_text(angle = 90))

11

Analysis of Outliers
Outliers in this case are primarily texts with atypically many sentences for the given genre.
The length of text itself is not a reason for discarding such a text, but let's look closer at how
many connectives (roughly) are associated with each text outlier.

indiv_docs <- select(doclen_set, -1)
ggplot(pdt30, aes(x = genre, y = number_of_sentences)) + geom_boxplot() +
 geom_jitter(alpha = 5/100, col = "tomato") + theme(axis.text.x = element_
text(angle = 90)) +
 geom_point(data = indiv_docs, color = "darkblue", shape = 4,
 position = position_jitter(height = 0, width = 0.3),
 alpha = 5/10, size = 2/3)

In comparison to the original boxplot with tomato-colored transparent points representing
connectives, we combined the boxplot including the individual connectives (transparent
tomato points) with the scatterplot above. We got ugly clutter in the homogenous genres
characterized with short texts, but on the other hand we have more information about the
outliers.

Collection outlier really just one connective in such a long text?

dplyr::filter(pdt30, genre == "collection", number_of_sentences >
 160)

A tibble: 1 × 6
document_id genre number_of_sentences sentence_id

12

<fctr> <fctr> <int> <fctr>
1 mf930713_002 collection 169 t-mf930713-002-p82s2B
... with 2 more variables: discourse_type <fctr>, discourse_class <fctr>

dplyr::filter(pdt30, document_id == "mf930713_002")

A tibble: 1 × 6
document_id genre number_of_sentences sentence_id
<fctr> <fctr> <int> <fctr>
1 mf930713_002 collection 169 t-mf930713-002-p82s2B
... with 2 more variables: discourse_type <fctr>, discourse_class <fctr>

Very odd, discard.

pdt30_original <- pdt30 #save the original
pdt30 <- dplyr::filter(filter(pdt30, document_id != "mf930713_002"))

Check that it has been removed.

dplyr::filter(pdt30, document_id == "mf930713_002")

A tibble: 0 × 6
... with 6 variables: document_id <fctr>, genre <fctr>,
number_of_sentences <int>, sentence_id <fctr>, discourse_type <fctr>,
discourse_class <fctr>

A similar one is in program. However, it is much shorter. Let's keep it. A bigger issue seems
to be the entire genre. It contains very few texts (see barplot - histogram does not say
anything about bulk text size!!! Cf. how small the news appears in boxplot!!!). We may be
forced to discard some genres, if it turns out that they provide too little data. More about
this later.

Just for fun - let's make a boxplot of bulk text and color the outliers according to genre. This
says a tiny bit more than barplot - we get the comparison with median.

ggplot(sentsums, aes(x = 1, y = sumsentnumbers)) + geom_boxplot() +
 theme(axis.text.x = element_blank()) + xlab("") + geom_point(aes(y = sums
entnumbers,
 col = genre), position = position_jitter(height = 0, width = 0.1))

13

The boxplot says the small text bulks are not really outliers. Let's keep them so far and look
at the proportions of connectives within each genre.

14

How Many Connectives Does Each Genre Contribute?
We will see a faceted scatterplot. Each facet comprises one genre. Each point represents one
occurrence of a connective. Besides, their vertical position indicates in how long a
document each connective occurred. We see that the fixed y-scale ranges between 0 to 200+
sentences. The x-scale is set individually for each genre. The more ticks on the x-axis, the
more documents the given genre comprises.

ggplot(pdt30, aes(x = document_id, y = number_of_sentences)) +
 geom_jitter(alpha = 0.06, col = "tomato") + theme(axis.text.x = element_b
lank()) +
 facet_wrap(~genre, scales = "free_x")

Program, weather, and plot can contain too little data. Caption would, according to the bulk
texts size shown by the barplot, be the same case, but this diagram shows that it comprises
many more texts. All of them have very small numbers of sentences. Perhaps they have a
similar rate of connectives per sentence (we can't tell now!), but on the whole there are
many more connectives in caption than in the others.

Let's look at the occurrences of individual discourse classes in the genres to find out
whether we have enough data in each genre to compare the proportions of discourse
classes!

15

Proportions of Discourse Classes in Genres
There are 4 discourse classes and 19 genres. We want to compare the proportions of the
discourse classes across the genres. Therefore we need the numbers of each discourse class
per genre.

Let's create a contingency table. It tells us how many times which combination of genre and
discourse_class occurred.

(cont_tab <- xtabs(formula = ~genre + discourse_class, data = pdt30))

discourse_class
genre CONTINGENCY CONTRAST EXPANSION TEMPORAL
advice 242 182 293 24
caption 8 9 20 1
collection 115 130 225 37
comment 483 523 656 69
description 520 651 1034 100
essay 913 1092 1569 183
invitation 31 52 128 7
letter 90 70 111 8
news 983 1289 1979 259
other 107 116 250 48
overview 18 35 78 3
person_interv 173 227 306 61
plot 5 5 10 2
program 1 7 14 4
review 209 346 482 35
sport 464 794 1095 172
survey 33 36 68 4
topic_interv 306 374 518 49
weather 0 0 14 0

table(pdt30[,c(2,6)]) #this does the same thing
round(prop.table(table(pdt30[,c(2,6)])),4)*100

Null Hypothesis and Alternative Hypothesis
We have two categorical variables - genre and discourse_class, and we want to find out
whether they are dependent from each other. The most common statistical test for this task
(dependency and two categorical variables) is Pearson's Chi-Squared test (aka Chisq). It will
test whether the genres differ in their proportions of the discourse classes enough to be
such very unlikely by mere chance. The test measures the probability of the differences
arising by chance.

What is actually chance in this context? It's basically the chance that having taken a few
different annotated texts from each genre would result in yet very different results showing
different trends; e.g.: our sample suggests that the genres do not differ so much in
expansion (most frequent everywhere) and temporal(least frequent everywhere), but there
are differences in proportions of contrast and contingency to each other. If this occurred by

16

chance, a different sample would suggest, say, that the genres differ most strongly in the
proportion of temporal relations to contingency, a yet different sample would suggest that
there are no differences between genres at all, etc.

So, the Chi-Squared test tests the probability of chance in the observed results. If this
probability is low enough, we can reject the Null Hypothesis, which says that there is no
dependency between genre and discourse class and all differences we may observe are
plain chance. When we can reject the Null Hypothesis, we can claim that we have observed
a statistically significant dependency between the two variables. However, we may never
say that we see our hypothesis (aka Alternative Hypothesis) verified or confirmed, since
there is no way in statistics to do that! All we can do is reject the Null Hypothesis. The
probability of chance at which we decide that something does not happen by chance (aka
alpha level)must be determined BEFORE the experiment. The usual alpha level lies at 0.05
p-value, which we will get from the test. (E.g. clinical studies may require an even lower
alpha level to make really sure the effect of a tested drug has not occurred by chance.)

One more word of caution - statistical significance does not say anything about the effect
size. The proportions may differ with almost no probability of chance, so that we could see
the difference in any sample we would take, but at the same time, the difference can always
be equally small!

As a first approximation, we run the Pearson Chi-Squared test on the contingency table we
have made:

summary(cont_tab)

Call: xtabs(formula = ~genre + discourse_class, data = pdt30)
Number of cases in table: 20555
Number of factors: 2
Test for independence of all factors:
Chisq = 297.53, df = 54, p-value = 2.257e-35
Chi-squared approximation may be incorrect

At first sight, we have got an interesting result, since the p-value is much lower than 0.05.
However, we have got a warning that Chi-squared approximation may be incorrect.
This means that our data has violated some prerequisite of this test and possibly
invalidated the entire test result.

The prerequisites for Chisq are:

1. The data are not correlated (e.g. a before/after scenario)
2. The sample is large enough. Large enough means that each cell having at least 5

EXPECTED observations.

The first point is a non-issue in our setup, but let's have a look at the data again how many
observations we have in the cells. These are of course just observed results, but we will have
the chance to identify the most problematic cells at first glance.

The first diagram shows the genrewise proportions between discourse classes in absolute
numbers.

17

ggplot(pdt30, aes(x = genre, fill = discourse_class)) + geom_bar(position = "
stack") +
 theme(axis.text.x = element_text(angle = 90))

18

To show the proportions better and preserve the dimension of the data size as much as
possible, we transform the barplot with stacked bars to a barplot with filled bars and add a
rug with data points jittered and made transparent.

ggplot(pdt30, aes(x = genre, fill = discourse_class)) + geom_bar(position = "
fill") +
 theme(axis.text.x = element_text(angle = 90)) + geom_point(aes(y = -0.23)
,
 size = 0.75, alpha = 0.3, position = position_jitter(width = 0.4,
 height = 0.2)) + ylab("relative frequency")

19

We get perhaps the best view using a simple mosaic plot. The width of the panels represents
their proportion of the total data size.

plotluck(data = pdt30, formula = discourse_class ~ genre)

20

Two last views on the genrewise proportions between discourse classes in faceted
diagrams. We create a base of the two plots to share and store it in a variable:

mappings_01 <- ggplot(data = pdt30, aes(x = discourse_class,
 fill = discourse_class))

A faceted barplot of the four discourse classes with unified y-scale.

mappings_01 + geom_bar(position = "dodge") + facet_wrap(~genre,
 scales = "fixed") + theme(axis.text.x = element_blank())

 The same barplot
with individual y-scales - better view of proportions.

21

mappings_01 + geom_bar(position = "dodge") + facet_wrap(~genre,
 scales = "free_y") + theme(axis.text.x = element_blank()) +
 scale_y_continuous(breaks = scales::pretty_breaks())

Apparently there is a problem with the weather genre lacking three discourse classes of
four expected. This one is sure to be discarded or merged with another one, if Chisq is to be
used. Other potentially problematic genres are caption, plot, and program.

Let's compute how many EXPECTED observations our data set has to be absolutely sure
that the test outcome is reliable.

What are the EXPECTED values? These are values that would be ideally observed if there
was no dependency between the variables. The test will compare the expected and the
observed values for each cell and estimate the probability with which they differ by chance.

The definition of chisq:

chisq = sum((observed - expected)^2/expected)

The expected value is computed as
row_total*column_total/total_number_of_observations

22

Computing Expected Observations for Each Cell in a Contingency table
Our contingency table again:

cont_tab

discourse_class
genre CONTINGENCY CONTRAST EXPANSION TEMPORAL
advice 242 182 293 24
caption 8 9 20 1
collection 115 130 225 37
comment 483 523 656 69
description 520 651 1034 100
essay 913 1092 1569 183
invitation 31 52 128 7
letter 90 70 111 8
news 983 1289 1979 259
other 107 116 250 48
overview 18 35 78 3
person_interv 173 227 306 61
plot 5 5 10 2
program 1 7 14 4
review 209 346 482 35
sport 464 794 1095 172
survey 33 36 68 4
topic_interv 306 374 518 49
weather 0 0 14 0

For the sake of further computations, we transform it into a matrix. Only the data structure
changes.

(cont_matrix <- as.matrix(cont_tab))

discourse_class
genre CONTINGENCY CONTRAST EXPANSION TEMPORAL
advice 242 182 293 24
caption 8 9 20 1
collection 115 130 225 37
comment 483 523 656 69
description 520 651 1034 100
essay 913 1092 1569 183
invitation 31 52 128 7
letter 90 70 111 8
news 983 1289 1979 259
other 107 116 250 48
overview 18 35 78 3
person_interv 173 227 306 61
plot 5 5 10 2
program 1 7 14 4
review 209 346 482 35
sport 464 794 1095 172

23

survey 33 36 68 4
topic_interv 306 374 518 49
weather 0 0 14 0

The matrix still contains our contingency table. Each cell contains our observed values. The
expected value in a cell is computed as
row_total*column_total/total_number_of_observations. Let's compute the sums for
rows and columns as well as the sum of observations:

sum(cont_matrix)

[1] 20555

colSums(cont_matrix)

CONTINGENCY CONTRAST EXPANSION TEMPORAL
4701 5938 8850 1066

rowSums(cont_matrix)

advice caption collection comment description
741 38 507 1731 2305
essay invitation letter news other
3757 218 279 4510 521
overview person_interv plot program review
134 767 22 26 1072
sport survey topic_interv weather
2525 141 1247 14

We put these numbers into the formula and compute the expected value for the first row of
the first column:

row <- 1
column <- 1
colSums(cont_matrix)[column]/sum(cont_matrix) * rowSums(cont_matrix)[row]/sum
(cont_matrix) *
 sum(cont_matrix)

CONTINGENCY
169.4693

Let's transform this into a new function called expected_cell, with which we can later
check random cells after a bulk computation for all cells at once. The function needs the
name of the matrix and the indices of the row and column of the cell we ask about.

expected_cell <- function(my_matrix, my_row, my_column) {
 my_cell <- colSums(my_matrix)[my_column]/sum(colSums(my_matrix)) *
 rowSums(my_matrix)[my_row]/sum(colSums(my_matrix)) *
 sum(colSums(my_matrix))
 my_cell <- round(my_cell, 1)
 return(my_cell)
}

24

expected_cell(my_matrix = cont_matrix, my_row = 1, my_column = 1)

CONTINGENCY
169.5

expected_cell(my_matrix = cont_matrix, my_row = 2, my_column = 1)

CONTINGENCY
8.7

Now we can do a bulk computation very fast by calculating with the entire matrix at the
same time. We can perform all arithmetic operations on two numerical matrices that we
can perform on two numbers. When the matrices have the same dimensions, the given
arithmetic operation is performed for each corresponding pair and the outcome is a matrix
of the resulting values, which again has the same dimensions as the original matrices.

Let's illustrate it on a small example:

(first_matrix <- matrix(c(1, 2, 10, 20, 3, 30), nrow = 2, ncol = 2,
 byrow = FALSE))

[,1] [,2]
[1,] 1 10
[2,] 2 20

(second_matrix <- matrix(c(1, 2, 10, 20, 3, 30), nrow = 2, ncol = 2,
 byrow = TRUE))

[,1] [,2]
[1,] 1 2
[2,] 10 20

(third_matrix <- first_matrix + second_matrix)

[,1] [,2]
[1,] 2 12
[2,] 12 40

The first matrix, first row, first column got added to the second matrix, first row, first
column, etc. Note the byrow parameter in the matrix function. It tells the function how to fill
the matrix with the vector we feed it - column-wise (default) or row-wise. The vector was
identical in both cases. It was the byrow parameter that made the resulting matrices look
differently! We are going to use this trick soon.

Back to our contingency table and the expected-value formula

row_total*column_total/total_number_of_observations. To bulk-compute all cells at
once, we need to multiply two matrices and then to multiply the resulting matrix with the
total number of observations.

25

The first matrix will have the same dimensions as our contingency table. We will fill each
column with the sum of values in the given column divided by the number of observations.
There are 19 observations (= rows) of 4 variables (= columns). That means we have to
repeat each column sum nineteen times. We will get a 76-value vector, which we will break
down into a 4 x 19 matrix filled by column.

This is the numbers we will repeat 19 times each:

colSums(cont_matrix)/sum(cont_matrix)

CONTINGENCY CONTRAST EXPANSION TEMPORAL
0.22870348 0.28888348 0.43055218 0.05186086

Here is how we create the vector:

rep(colSums(cont_matrix)/sum(cont_matrix), each = 19)

CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY
0.22870348 0.22870348 0.22870348 0.22870348 0.22870348 0.22870348
CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY
0.22870348 0.22870348 0.22870348 0.22870348 0.22870348 0.22870348
CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY
0.22870348 0.22870348 0.22870348 0.22870348 0.22870348 0.22870348
CONTINGENCY CONTRAST CONTRAST CONTRAST CONTRAST CONTRAST
0.22870348 0.28888348 0.28888348 0.28888348 0.28888348 0.28888348
CONTRAST CONTRAST CONTRAST CONTRAST CONTRAST CONTRAST
0.28888348 0.28888348 0.28888348 0.28888348 0.28888348 0.28888348
CONTRAST CONTRAST CONTRAST CONTRAST CONTRAST CONTRAST
0.28888348 0.28888348 0.28888348 0.28888348 0.28888348 0.28888348
CONTRAST CONTRAST EXPANSION EXPANSION EXPANSION EXPANSION
0.28888348 0.28888348 0.43055218 0.43055218 0.43055218 0.43055218
EXPANSION EXPANSION EXPANSION EXPANSION EXPANSION EXPANSION
0.43055218 0.43055218 0.43055218 0.43055218 0.43055218 0.43055218
EXPANSION EXPANSION EXPANSION EXPANSION EXPANSION EXPANSION
0.43055218 0.43055218 0.43055218 0.43055218 0.43055218 0.43055218
EXPANSION EXPANSION EXPANSION TEMPORAL TEMPORAL TEMPORAL
0.43055218 0.43055218 0.43055218 0.05186086 0.05186086 0.05186086
TEMPORAL TEMPORAL TEMPORAL TEMPORAL TEMPORAL TEMPORAL
0.05186086 0.05186086 0.05186086 0.05186086 0.05186086 0.05186086
TEMPORAL TEMPORAL TEMPORAL TEMPORAL TEMPORAL TEMPORAL
0.05186086 0.05186086 0.05186086 0.05186086 0.05186086 0.05186086
TEMPORAL TEMPORAL TEMPORAL TEMPORAL
0.05186086 0.05186086 0.05186086 0.05186086

Here comes the matrix of these column sums:

(mat_cols <- rep(colSums(cont_matrix)/sum(cont_matrix), each = nrow(cont_matr
ix)) %>%
 matrix(nrow = nrow(cont_matrix), ncol = ncol(cont_matrix)))

[,1] [,2] [,3] [,4]
[1,] 0.2287035 0.2888835 0.4305522 0.05186086

26

[2,] 0.2287035 0.2888835 0.4305522 0.05186086
[3,] 0.2287035 0.2888835 0.4305522 0.05186086
[4,] 0.2287035 0.2888835 0.4305522 0.05186086
[5,] 0.2287035 0.2888835 0.4305522 0.05186086
[6,] 0.2287035 0.2888835 0.4305522 0.05186086
[7,] 0.2287035 0.2888835 0.4305522 0.05186086
[8,] 0.2287035 0.2888835 0.4305522 0.05186086
[9,] 0.2287035 0.2888835 0.4305522 0.05186086
[10,] 0.2287035 0.2888835 0.4305522 0.05186086
[11,] 0.2287035 0.2888835 0.4305522 0.05186086
[12,] 0.2287035 0.2888835 0.4305522 0.05186086
[13,] 0.2287035 0.2888835 0.4305522 0.05186086
[14,] 0.2287035 0.2888835 0.4305522 0.05186086
[15,] 0.2287035 0.2888835 0.4305522 0.05186086
[16,] 0.2287035 0.2888835 0.4305522 0.05186086
[17,] 0.2287035 0.2888835 0.4305522 0.05186086
[18,] 0.2287035 0.2888835 0.4305522 0.05186086
[19,] 0.2287035 0.2888835 0.4305522 0.05186086

Now the matrix of the row sums. Mind that the vector will have to be broken into a matrix
by rows!

(mat_rows <- rep(rowSums(cont_matrix)/sum(cont_matrix), each = ncol(cont_matr
ix)) %>%
 matrix(nrow = nrow(cont_matrix), ncol = ncol(cont_matrix),
 byrow = TRUE))

[,1] [,2] [,3] [,4]
[1,] 0.0360496230 0.0360496230 0.0360496230 0.0360496230
[2,] 0.0018486986 0.0018486986 0.0018486986 0.0018486986
[3,] 0.0246655315 0.0246655315 0.0246655315 0.0246655315
[4,] 0.0842130868 0.0842130868 0.0842130868 0.0842130868
[5,] 0.1121381659 0.1121381659 0.1121381659 0.1121381659
[6,] 0.1827779129 0.1827779129 0.1827779129 0.1827779129
[7,] 0.0106056920 0.0106056920 0.0106056920 0.0106056920
[8,] 0.0135733398 0.0135733398 0.0135733398 0.0135733398
[9,] 0.2194113354 0.2194113354 0.2194113354 0.2194113354
[10,] 0.0253466310 0.0253466310 0.0253466310 0.0253466310
[11,] 0.0065190951 0.0065190951 0.0065190951 0.0065190951
[12,] 0.0373145220 0.0373145220 0.0373145220 0.0373145220
[13,] 0.0010702992 0.0010702992 0.0010702992 0.0010702992
[14,] 0.0012648991 0.0012648991 0.0012648991 0.0012648991
[15,] 0.0521527609 0.0521527609 0.0521527609 0.0521527609
[16,] 0.1228411579 0.1228411579 0.1228411579 0.1228411579
[17,] 0.0068596449 0.0068596449 0.0068596449 0.0068596449
[18,] 0.0606665045 0.0606665045 0.0606665045 0.0606665045
[19,] 0.0006810995 0.0006810995 0.0006810995 0.0006810995

27

The first matrix (mat_cols) multiplied with the second matrix (mat_rows) multiplied by the
total of all observations will give us the matrix of expected values. We will round the result
to one decimal place at the same time.

(exp_matrix <- (mat_cols * mat_rows * sum(cont_matrix)) %>% round(1))

[,1] [,2] [,3] [,4]
[1,] 169.5 214.1 319.0 38.4
[2,] 8.7 11.0 16.4 2.0
[3,] 116.0 146.5 218.3 26.3
[4,] 395.9 500.1 745.3 89.8
[5,] 527.2 665.9 992.4 119.5
[6,] 859.2 1085.3 1617.6 194.8
[7,] 49.9 63.0 93.9 11.3
[8,] 63.8 80.6 120.1 14.5
[9,] 1031.5 1302.9 1941.8 233.9
[10,] 119.2 150.5 224.3 27.0
[11,] 30.6 38.7 57.7 6.9
[12,] 175.4 221.6 330.2 39.8
[13,] 5.0 6.4 9.5 1.1
[14,] 5.9 7.5 11.2 1.3
[15,] 245.2 309.7 461.6 55.6
[16,] 577.5 729.4 1087.1 130.9
[17,] 32.2 40.7 60.7 7.3
[18,] 285.2 360.2 536.9 64.7
[19,] 3.2 4.0 6.0 0.7

We will give the matrix back the original row and column names for easier indexing.

row.names(exp_matrix) <- row.names(cont_matrix)
colnames(exp_matrix) <- colnames(cont_matrix)
exp_matrix

CONTINGENCY CONTRAST EXPANSION TEMPORAL
advice 169.5 214.1 319.0 38.4
caption 8.7 11.0 16.4 2.0
collection 116.0 146.5 218.3 26.3
comment 395.9 500.1 745.3 89.8
description 527.2 665.9 992.4 119.5
essay 859.2 1085.3 1617.6 194.8
invitation 49.9 63.0 93.9 11.3
letter 63.8 80.6 120.1 14.5
news 1031.5 1302.9 1941.8 233.9
other 119.2 150.5 224.3 27.0
overview 30.6 38.7 57.7 6.9
person_interv 175.4 221.6 330.2 39.8
plot 5.0 6.4 9.5 1.1
program 5.9 7.5 11.2 1.3
review 245.2 309.7 461.6 55.6
sport 577.5 729.4 1087.1 130.9
survey 32.2 40.7 60.7 7.3

28

topic_interv 285.2 360.2 536.9 64.7
weather 3.2 4.0 6.0 0.7

Let's perform a few random checks with our one-cell function expected_cell:

expected_cell(my_matrix = exp_matrix, my_row = 1, my_column = 4)

TEMPORAL
38.4

expected_cell(my_matrix = exp_matrix, my_row = 19, my_column = 1)

CONTINGENCY
3.2

expected_cell(my_matrix = exp_matrix, my_row = 3, my_column = 2)

CONTRAST
146.5

The results of cell-wise vs. bulk-wise computations agree. Our matrix of expected values is
correct.

Finally, we will identify the names of rows (i.e. genres), in which the expected number of
observations is less than 5.

which(exp_matrix < 5, arr.ind = TRUE)

row col
weather 19 1
weather 19 2
caption 2 4
plot 13 4
program 14 4
weather 19 4

This shows that, to be able to use the chisq test, we have to remove weather, caption, plot,
and program, alternatively merge them and test the expected values again. However, let's
assume that an umbrella genre does not make sense. We will rather merge all these with
other. This means that, in our pdt30 data set, all genre values equal to these will be
replaced with other

levels(pdt30$genre)[levels(pdt30$genre) %in% c("weather", "caption",
 "plot", "program")] <- "other"

Check

sum(pdt30$genre %in% c("weather", "caption", "plot", "program"))

[1] 0

head(pdt30_original[which(pdt30_original$genre %in% c("weather",
 "caption", "plot", "program")),])

29

A tibble: 6 × 6
document_id genre number_of_sentences sentence_id
<fctr> <fctr> <int> <fctr>
1 cmpr9410_051 caption 2 t-cmpr9410-051-p3s2
2 cmpr9415_055 caption 2 t-cmpr9415-055-p3s1
3 cmpr9415_056 caption 2 t-cmpr9415-056-p3s1
4 ln94200_10 plot 10 t-ln94200-10-p3s2
5 ln94200_11 plot 6 t-ln94200-11-p2s2
6 ln94200_12 program 9 t-ln94200-12-p2s5
... with 2 more variables: discourse_type <fctr>, discourse_class <fctr>

head(pdt30[which(pdt30_original$genre %in% c("weather", "caption",
 "plot", "program")),])

A tibble: 6 × 6
document_id genre number_of_sentences sentence_id
<fctr> <fctr> <int> <fctr>
1 cmpr9410_051 other 2 t-cmpr9410-051-p3s2
2 cmpr9415_055 other 2 t-cmpr9415-055-p3s1
3 cmpr9415_056 other 2 t-cmpr9415-056-p3s1
4 ln94200_10 other 10 t-ln94200-10-p3s2
5 ln94200_11 other 6 t-ln94200-11-p2s2
6 ln94200_12 other 9 t-ln94200-12-p2s5
... with 2 more variables: discourse_type <fctr>, discourse_class <fctr>

Now we can run the chisq test.

(result <- chisq.test(pdt30$genre, pdt30$discourse_class))

Pearson's Chi-squared test

data: pdt30$genre and pdt30$discourse_class
X-squared = 273.34, df = 42, p-value < 2.2e-16

The p-value is much less than 0.05, so we can reject the null hypothesis that denies any
association between genre and distribution of discourse classes. No warning occurs, so we
can trust it. Let's look at the results closer, though, to see which discourse classes and
genres have contributed the most and the least and how to this result. We will be able to see
which genres and discourse classes attract/repel each other. All this information is hidden
in the object that is returned by the chisq.test function. It is a list.

str(result)

List of 9
$ statistic: Named num 273
..- attr(*, "names")= chr "X-squared"
$ parameter: Named int 42
..- attr(*, "names")= chr "df"
$ p.value : num 1.1e-35
$ method : chr "Pearson's Chi-squared test"

30

$ data.name: chr "pdt30$genre and pdt30$discourse_class"
$ observed : 'table' int [1:15, 1:4] 242 121 115 483 520 913 31 90 983 18
...
..- attr(*, "dimnames")=List of 2
.. ..$ pdt30$genre : chr [1:15] "advice" "other" "collection" "
comment" ...
.. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL"
$ expected : num [1:15, 1:4] 169 142 116 396 527 ...
..- attr(*, "dimnames")=List of 2
.. ..$ pdt30$genre : chr [1:15] "advice" "other" "collection" "
comment" ...
.. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL"
$ residuals: table [1:15, 1:4] 5.5716 -1.7642 -0.0885 4.3783 -0.3119 ...
..- attr(*, "dimnames")=List of 2
.. ..$ pdt30$genre : chr [1:15] "advice" "other" "collection" "
comment" ...
.. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL"
$ stdres : table [1:15, 1:4] 6.462 -2.04 -0.102 5.21 -0.377 ...
..- attr(*, "dimnames")=List of 2
.. ..$ pdt30$genre : chr [1:15] "advice" "other" "collection" "
comment" ...
.. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL"
- attr(*, "class")= chr "htest"

The elements observed and expected contain the contingency tables of observed and
expected values, respectively. The expected values are exactly those we have computed
before (except for the genres we have merged). Unfortunately, chisq.test only computes
the expected values when it is able to proceed correctly, which is why we had to find out
and remove the problematic genres manually.

round(result$expected, 1)

pdt30$discourse_class
pdt30$genre CONTINGENCY CONTRAST EXPANSION TEMPORAL
advice 169.5 214.1 319.0 38.4
other 142.0 179.4 267.4 32.2
collection 116.0 146.5 218.3 26.3
comment 395.9 500.1 745.3 89.8
description 527.2 665.9 992.4 119.5
essay 859.2 1085.3 1617.6 194.8
invitation 49.9 63.0 93.9 11.3
letter 63.8 80.6 120.1 14.5
news 1031.5 1302.9 1941.8 233.9
overview 30.6 38.7 57.7 6.9
person_interv 175.4 221.6 330.2 39.8
review 245.2 309.7 461.6 55.6

31

sport 577.5 729.4 1087.1 130.9
survey 32.2 40.7 60.7 7.3
topic_interv 285.2 360.2 536.9 64.7

expected_cell(cont_matrix, 1, 1) #cf. matrix before genre merging

CONTINGENCY
169.5

Standardized residuals (stdres) will tell more about the effect of different genre vs.
discourse class combinations. They express the difference between the expected and the
observed values (observed minus expected, the whole divided by the square root of
expected). Standardized residuals give a better comparison than residuals (residuals),
because they abstract from the fact that with the same difference x, a large number - x is
always larger than a small number - x.

result$stdres

pdt30$discourse_class
pdt30$genre CONTINGENCY CONTRAST EXPANSION TEMPORAL
advice 6.4615765 -2.6468625 -1.9676630 -2.4346740
other -2.0398666 -3.8116713 3.3434255 4.1887851
collection -0.1020027 -1.6335066 0.6094034 2.1712639
comment 5.2095058 1.2713551 -4.5289432 -2.3526586
description -0.3769206 -0.7255357 1.8561264 -1.9478011
essay 2.3100952 0.2653760 -1.7707918 -0.9637207
invitation -3.0571787 -1.6490094 4.6946794 -1.3221224
letter 3.7590890 -1.4095414 -1.1107431 -1.7585667
news -1.9443364 -0.5155531 1.2665335 1.9083080
overview -2.6096549 -0.7095047 3.5542873 -1.5436120
person_interv -0.2116568 0.4405930 -1.8010955 3.5221289
review -2.7016956 2.5136831 1.2955250 -2.9136409
sport -5.7410089 3.0270799 0.3371150 3.9337022
survey 0.1514688 -0.8823696 1.2445159 -1.2623203
topic_interv 1.4474858 0.8871888 -1.1151822 -2.0648269

The values with negative sign mean a repelling effect, the positive ones an attracting effect.

Chisq Warnings
• NEVER compute chisq on percentages!!! The contingency table has to contain absolute

frequencies.
• Chisq does not give you the effect size. What you see in the residuals gives you a hint

about which categories attract or repel each other and you can compare the numbers
as strengths of these partial trends, but you cannot get a total effect size by adding
them together or whatever you might think about!!!

32

Alternative to Chisq: Fisher's exact test
What about if you cannot use chisq but really need to test your two categorical variables on
dependence? Fisher exact test. It is implemented in R, but it is not designed for as many
categories as we have. Strictly speaking, it is designed for 2x2 tables only, while we have a
19 x 4 table.

It will certainly throw an error:

fisher.test(pdt30$genre, pdt30$discourse_class)

Error in fisher.test(pdt30\$genre, pdt30\$discourse_class) :
FEXACT error 5.
The hash table key cannot be computed because the largest key is larger than
the largest representable int.
The algorithm cannot proceed.Reduce the workspace size or use another algorit
hm.

So if we really really need this test, we have to divide the task into several smaller tables.
Let's try and compute whether there is a significant difference in the distribution of
discourse classes between advice and invitation:

adv_invit <- dplyr::filter(pdt30, genre %in% c("advice", "invitation"))
dplyr::glimpse(adv_invit)

Observations: 959
Variables: 6
$ document_id <fctr> cmpr9410_003, cmpr9410_003, cmpr9410_003,...
$ genre <fctr> advice, advice, advice, advice, advice, a...
$ number_of_sentences <int> 16, 16, 16, 16, 16, 29, 29, 29, 29, 29, 29...
$ sentence_id <fctr> t-cmpr9410-003-p5s2, t-cmpr9410-003-p5s4,...
$ discourse_type <fctr> conj, conj, cond, reason, reason, restr, ...
$ discourse_class <fctr> EXPANSION, EXPANSION, CONTINGENCY, CONTIN...

fisher.test(adv_invit$genre, adv_invit$discourse_class, alternative = "two.si
ded")

 Error in fisher.test(adv_invit$genre,
 adv_invit$discourse_class, alternative = "two.sided") :
 Bug in FEXACT: gave negative key

A bit of trying reveals that at the moment of writing this code (probably conditioned by the
given combination computing power, OS, R version etc.), Fisher's test could pass with three
of the four labels (no matter which they were) and two genres:

adv_invit_contingency <- dplyr::filter(adv_invit, discourse_class %in%
 c("CONTINGENCY", "TEMPORAL", "CONTRAST")) %>% select(one_of("genre",
 "discourse_class"))
dplyr::glimpse(adv_invit_contingency)

Observations: 538
Variables: 2

33

$ genre <fctr> advice, advice, advice, advice, advice, advic...
$ discourse_class <fctr> CONTINGENCY, CONTINGENCY, CONTINGENCY, CONTRA...

result <- fisher.test(adv_invit_contingency$genre, adv_invit_contingency$disc
ourse_class)
result

Fisher's Exact Test for Count Data

data: adv_invit_contingency$genre and adv_invit_contingency$discourse_cla
ss
p-value = 0.002287
alternative hypothesis: two.sided

Testing all combinations of genres and labels would require a dedicated script, but calling
the test function itself is easy. Fisher test has one more advantage over chisq: you can
determine whether your alternative hypothesis is two-sided or one-sided in eiter direction.

If really performed, we would probably have to create a special 2x2 table for each category,
e.g. EXPANSION - NOT EXPANSION. If we choose two existing categories instead (e.g.
EXPANSION - TEMPORAL), we are discarding data and biasing the results.

One-sided vs. Two-Sided Alternative Hypothesis
Two-sided - Less specific. You simply claim: "The two things are different." One-sided -
More specific. You claim: "One thing is more/less ... than the other." When you formulate
your hypothesis as one-sided, you need less evidence for the p-value to be low, i.e. result
significant, than if you formulated your hypothesis as one-sided. However, you should
decide BEFORE you compute it. Reformulating your hypothesis from two-sided to one-
sided after you have obtained non-significant results from your two-sided hypothesis
equals cheating!!! Also, when you formulate your hypothesis as one-sided just as a
precaution, you run the risk of missing the effect on the other side. Imagine you would test a
drug to increase the size of orchard apples and really needed to sell it, so you would test it
with the one-sided alternative hypothesis "apple trees treated with my drug bear bigger
apples", which would prove significant, but in fact, the trees treated with your drug would
also bear significantly more really small apples at the same time!

	Data Structure
	Data Set at First Sight

	Visualization
	Our PDT 3.0 Subcorpus
	How Many How Long Texts Are There in the Corpus?
	How Much Text Is There in the Corpus for Each Genre?
	How Many How Long Texts Are There in the Corpus for Each Genre? (I)
	How Many How Long Texts Are There in the Corpus for Each Genre? (II)
	How Many Connectives Are There in the Different Texts, Genrewise?
	Analysis of Outliers
	How Many Connectives Does Each Genre Contribute?
	Proportions of Discourse Classes in Genres
	Null Hypothesis and Alternative Hypothesis
	Computing Expected Observations for Each Cell in a Contingency table
	Chisq Warnings
	Alternative to Chisq: Fisher's exact test

	One-sided vs. Two-Sided Alternative Hypothesis

