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library(dplyr) 
library(tidyr) 
library(stringr) 
library(ggplot2) 
library(ggthemes) 
library(plotluck) 
library(scales) 
library(formatR) 

Data Structure 
pdt30 <- readRDS("src_data/pdt_30.RDS") 

Data Set at First Sight 
dplyr::glimpse(pdt30) 

## Observations: 20,556 
## Variables: 6 
## $ document_id         <fctr> cmpr9410_001, cmpr9410_001, cmpr9410_001,... 
## $ genre               <fctr> comment, comment, comment, comment, comme... 
## $ number_of_sentences <int> 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33... 
## $ sentence_id         <fctr> t-cmpr9410-001-p10s2, t-cmpr9410-001-p11s... 
## $ discourse_type      <fctr> conc, opp, spec, restr, conj, conc, restr... 
## $ discourse_class     <fctr> CONTRAST, CONTRAST, EXPANSION, CONTRAST, ... 

Interpretation: 5 categorical variables, 1 numerical variable 

summary(pdt30) 

##       document_id             genre      number_of_sentences 
##  ln94207_73 :  123   news        :4510   Min.   :  1.0       
##  ln94207_76 :  118   essay       :3757   1st Qu.: 16.0       
##  ln94210_95 :  102   sport       :2525   Median : 26.0       
##  ln94211_92 :   87   description :2305   Mean   : 37.3       
##  ln94200_127:   80   comment     :1731   3rd Qu.: 42.0       
##  ln94207_79 :   77   topic_interv:1247   Max.   :231.0       
##  (Other)    :19969   (Other)     :4481                       
##                sentence_id    discourse_type    discourse_class 
##  t-ln94203-125-p8s11 :    6   conj   :7498   CONTINGENCY:4701   
##  t-ln94207-73-p13s7  :    6   opp    :3196   CONTRAST   :5938   
##  t-ln94207-90-p4s9   :    6   reason :2632   EXPANSION  :8851   
##  t-ln95048-061-p7s3  :    6   cond   :1369   TEMPORAL   :1066   
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##  t-cmpr9415-033-p11s4:    5   conc   : 880                      
##  t-ln94203-99-p8s1   :    5   preced : 840                      
##  (Other)             :20522   (Other):4141 

Interpretation: Some levels of categorical variables and their frequency, summary of 
numerical variable 

str(pdt30) 

## Classes 'tbl_df', 'tbl' and 'data.frame':    20556 obs. of  6 variables: 
##  $ document_id        : Factor w/ 2580 levels "cmpr9410_001",..: 1 1 1 1 1 
1 1 1 1 1 ... 
##  $ genre              : Factor w/ 19 levels "advice","caption",..: 4 4 4 4 
4 4 4 4 4 4 ... 
##  $ number_of_sentences: int  33 33 33 33 33 33 33 33 33 33 ... 
##  $ sentence_id        : Factor w/ 16112 levels "t-cmpr9410-001-p10s2",..: 
1 2 3 4 4 5 6 6 7 8 ... 
##  $ discourse_type     : Factor w/ 23 levels "conc","cond",..: 1 16 22 21 4 
1 21 4 2 16 ... 
##  $ discourse_class    : Factor w/ 4 levels "CONTINGENCY",..: 2 2 3 2 3 2 2 
3 1 2 ... 

Interpretation: all levels of categorical variables 

Visualization 

Our PDT 3.0 Subcorpus 
Why "subcorpus"? Our table records observations of connectives. Therefore we do not 
consider PDT30 documents where no connectives have occurred. (Maybe there are no such 
texts, but for the sake of precision!) Anyway, henceforth it will be called corpus. 

How Many How Long Texts Are There in the Corpus? 
doclen_set <- pdt30 %>% dplyr::distinct(document_id, .keep_all = TRUE) %>%  
    dplyr::select(-c(starts_with("discourse"), starts_with("sentence"))) 
set.seed(122) 
dplyr::sample_n(doclen_set, 10) 

## # A tibble: 10 × 3 
##     document_id         genre number_of_sentences 
##          <fctr>        <fctr>               <int> 
## 1  mf920925_116          news                   7 
## 2  mf920925_120 person_interv                  52 
## 3    ln94203_75   description                  25 
## 4  cmpr9415_018       comment                  26 
## 5   ln95045_059          news                   6 
## 6   ln95046_078          news                   5 
## 7   ln95047_120          news                  13 
## 8  cmpr9410_008        advice                  64 
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## 9  cmpr9413_052         essay                  58 
## 10  ln95045_110          news                  11 

How many texts are there in the corpus? 

nrow(doclen_set) 

## [1] 2580 

We are exploring a single variable: text length. Each text is one observation of this 
quantitative variable. A common diagram: histogram. X-axis: variable values, Y-axis: 
frequency of such. We see the distribution of text lengths in the subcorpus. 

ggplot(doclen_set, aes(x = number_of_sentences)) + geom_histogram(binwidth = 
10,  
    col = "black", fill = "tomato") 

 The width of bins is 
adjustable. "Binwidth 10" means: the first bin contains texts of length 0-9 sentences, the 
second of 10-19 sentences, etc. There are somewhat less than 250 texts between 0 and 10 
sentences long, 1300 texts between 10 and 20 sentences long, etc.There is a tiny number of 
texts (one?) over 150 sentences long. 
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How many texts do we actually have? As many as there are levels of the document_id factor 
in the pdt30 data frame, see str(pdt30) above. But how many sentences are they long? 

sentsums <- dplyr::summarise(group_by(doclen_set, genre), sum(number_of_sente
nces)) 
colnames(sentsums)[2] <- "sumsentnumbers" 
sentsums 

## # A tibble: 19 × 2 
##            genre sumsentnumbers 
##           <fctr>          <int> 
## 1         advice           1501 
## 2        caption             90 
## 3     collection           1833 
## 4        comment           3203 
## 5    description           5850 
## 6          essay           6793 
## 7     invitation            693 
## 8         letter            434 
## 9           news          12537 
## 10         other            974 
## 11      overview            511 
## 12 person_interv           1471 
## 13          plot             73 
## 14       program            146 
## 15        review           2314 
## 16         sport           4817 
## 17        survey            355 
## 18  topic_interv           2602 
## 19       weather            105 

And how many sentences long is the entire corpus? 

dplyr::summarise(doclen_set, sum(number_of_sentences)) 

## # A tibble: 1 × 1 
##   `sum(number_of_sentences)` 
##                        <int> 
## 1                      46302 
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We may anyway also want to visualize the relative frequencies of different text lengths: 

ggplot(doclen_set, aes(x = number_of_sentences)) + geom_histogram(aes(x = num
ber_of_sentences,  
    y = ..count../sum(..count..)), col = "black", fill = "tomato",  
    binwidth = 10) 
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How Much Text Is There in the Corpus for Each Genre? 
Text is calculated in length, i.e. number of sentences. This time we focus on the text bulk in 
each genre, not distinguishing individual documents. We add color distinction to genres for 
easier comparison with the following plots, although the colors add no information to the 
barplot. 

ggplot(sentsums, aes(y = sumsentnumbers, x = genre)) + geom_bar(stat = "ident
ity",  
    aes(fill = genre)) + theme(axis.text.x = element_text(angle = 90)) +  
    ylab("number of sentences with connectives") 

 

BTW - What is the difference between a histogram and a barplot? 
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How Many How Long Texts Are There in the Corpus for Each Genre? (I) 
Normally, the distribution of sentence_lengths of documents would be all a histogram 
would be able to tell, since the y-axis always shows frequency or probability density (we 
ignore this one) and there would be only one axis left to project a variable onto. Thanks to 
ggplot2, however, we can add genre as a second variable, deploying color fill, which we can 
regard as a "third axis". We add lines for better color distinction. 

# doclen_set <- pdt30 %>% distinct(document_id, .keep_all = 
# TRUE) %>% select(-c(starts_with('discourse'), 
# starts_with('sentence'))) 
ggplot(doclen_set, aes(x = number_of_sentences, fill = genre)) +  
    geom_histogram(binwidth = 10, col = "black") 

 

Compare e.g. the tall dark-green column of news in the barplot and the dark-green areas in 
the columns in this histogram. Together, they tell us: news contribute the largest text bulk 
to the corpus (barplot) and the texts are mostly short, typically between 10-20 sentences 
(histogram with color mapping for genres). 
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How Many How Long Texts Are There in the Corpus for Each Genre? 
(II) 
The colored histogram above suffers from too many similar colors. A row of boxplots with 
whiskers presents the same information textwise and in a more transparent way: 

ggplot(doclen_set, aes(x = genre, y = number_of_sentences)) +  
    geom_boxplot() + theme(axis.text.x = element_text(angle = 90)) +  
    ylab("number of sentences with connectives") 

 

Boxplot Interpretation: for each genre, all observations sorted from min to max. First 
quartile: 25% of the observations, second quartile (median): 50% of the observations, third 
quartile: 75% of the observations, fourth = maximum. Range: max-min. Box: "IQR" 
(interquartile range): difference between 3rd and 1st quartile. Whiskers: 1,5*IQR. Beyond 
whiskers: outliers. 

Here: outliers only upwards - quite short texts occur in all genres, but the really long texts 
in just a few and in even fewer genres they are common! Cf. person_interview and essay. 
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How Many Connectives Are There in the Different Texts, Genrewise? 
When we clutter the boxplots above with a color-mapped additional variable, we will get a 
first glimpse at how many connectives there are in the individual texts in the individual 
genres. 

Each tomato-colored point represents one occurrence of a connective in a document of the 
length given by the y-axis. Since they are so many points that they would hide the boxplots, 
we made them transparent. With the current plot parameters it takes 500 points over each 
other to appear as one fully opaque point. The parameter responsible for opacity is called 
alpha. We will get few opaque points in the plot, since we have also jittered them, so that 
they overlap less frequently. 

ggplot(pdt30, aes(x = genre, y = number_of_sentences)) + geom_boxplot() +  
    geom_jitter(alpha = 5/100, col = "tomato") + theme(axis.text.x = element_
text(angle = 90)) 

 

NB, the current plot does not represent the individual texts. We may see horizontal tomato-
colored clouds and think that they all belong to the same document, but in fact they belong 
to all documents within the given genre that have the same sentence length. A scatterplot 
shows the individual text. We will check whether there are many documents with the same 
length within a single genre. 
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ggplot(doclen_set, aes(x = genre, y = number_of_sentences)) +  
    geom_point(color = "darkblue", shape = 4, position = position_jitter(heig
ht = 0,  
        width = 0.3)) + theme(axis.text.x = element_text(angle = 90)) 
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Analysis of Outliers 
Outliers in this case are primarily texts with atypically many sentences for the given genre. 
The length of text itself is not a reason for discarding such a text, but let's look closer at how 
many connectives (roughly) are associated with each text outlier. 

indiv_docs <- select(doclen_set, -1) 
ggplot(pdt30, aes(x = genre, y = number_of_sentences)) + geom_boxplot() +  
    geom_jitter(alpha = 5/100, col = "tomato") + theme(axis.text.x = element_
text(angle = 90)) +  
    geom_point(data = indiv_docs, color = "darkblue", shape = 4,  
        position = position_jitter(height = 0, width = 0.3),  
        alpha = 5/10, size = 2/3) 

 

In comparison to the original boxplot with tomato-colored transparent points representing 
connectives, we combined the boxplot including the individual connectives (transparent 
tomato points) with the scatterplot above. We got ugly clutter in the homogenous genres 
characterized with short texts, but on the other hand we have more information about the 
outliers. 

Collection outlier really just one connective in such a long text? 

dplyr::filter(pdt30, genre == "collection", number_of_sentences >  
    160) 

## # A tibble: 1 × 6 
##    document_id      genre number_of_sentences           sentence_id 
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##         <fctr>     <fctr>               <int>                <fctr> 
## 1 mf930713_002 collection                 169 t-mf930713-002-p82s2B 
## # ... with 2 more variables: discourse_type <fctr>, discourse_class <fctr> 

dplyr::filter(pdt30, document_id == "mf930713_002") 

## # A tibble: 1 × 6 
##    document_id      genre number_of_sentences           sentence_id 
##         <fctr>     <fctr>               <int>                <fctr> 
## 1 mf930713_002 collection                 169 t-mf930713-002-p82s2B 
## # ... with 2 more variables: discourse_type <fctr>, discourse_class <fctr> 

Very odd, discard. 

pdt30_original <- pdt30  #save the original 
pdt30 <- dplyr::filter(filter(pdt30, document_id != "mf930713_002")) 

Check that it has been removed. 

dplyr::filter(pdt30, document_id == "mf930713_002") 

## # A tibble: 0 × 6 
## # ... with 6 variables: document_id <fctr>, genre <fctr>, 
## #   number_of_sentences <int>, sentence_id <fctr>, discourse_type <fctr>, 
## #   discourse_class <fctr> 

A similar one is in program. However, it is much shorter. Let's keep it. A bigger issue seems 
to be the entire genre. It contains very few texts (see barplot - histogram does not say 
anything about bulk text size!!! Cf. how small the news appears in boxplot!!! ). We may be 
forced to discard some genres, if it turns out that they provide too little data. More about 
this later. 

Just for fun - let's make a boxplot of bulk text and color the outliers according to genre. This 
says a tiny bit more than barplot - we get the comparison with median. 

ggplot(sentsums, aes(x = 1, y = sumsentnumbers)) + geom_boxplot() +  
    theme(axis.text.x = element_blank()) + xlab("") + geom_point(aes(y = sums
entnumbers,  
    col = genre), position = position_jitter(height = 0, width = 0.1)) 



13 
 

 

The boxplot says the small text bulks are not really outliers. Let's keep them so far and look 
at the proportions of connectives within each genre. 
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How Many Connectives Does Each Genre Contribute? 
We will see a faceted scatterplot. Each facet comprises one genre. Each point represents one 
occurrence of a connective. Besides, their vertical position indicates in how long a 
document each connective occurred. We see that the fixed y-scale ranges between 0 to 200+ 
sentences. The x-scale is set individually for each genre. The more ticks on the x-axis, the 
more documents the given genre comprises. 

ggplot(pdt30, aes(x = document_id, y = number_of_sentences)) +  
    geom_jitter(alpha = 0.06, col = "tomato") + theme(axis.text.x = element_b
lank()) +  
    facet_wrap(~genre, scales = "free_x") 

 

Program, weather, and plot can contain too little data. Caption would, according to the bulk 
texts size shown by the barplot, be the same case, but this diagram shows that it comprises 
many more texts. All of them have very small numbers of sentences. Perhaps they have a 
similar rate of connectives per sentence (we can't tell now!), but on the whole there are 
many more connectives in caption than in the others. 

Let's look at the occurrences of individual discourse classes in the genres to find out 
whether we have enough data in each genre to compare the proportions of discourse 
classes! 
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Proportions of Discourse Classes in Genres 
There are 4 discourse classes and 19 genres. We want to compare the proportions of the 
discourse classes across the genres. Therefore we need the numbers of each discourse class 
per genre. 

Let's create a contingency table. It tells us how many times which combination of genre and 
discourse_class occurred. 

(cont_tab <- xtabs(formula = ~genre + discourse_class, data = pdt30)) 

##                discourse_class 
## genre           CONTINGENCY CONTRAST EXPANSION TEMPORAL 
##   advice                242      182       293       24 
##   caption                 8        9        20        1 
##   collection            115      130       225       37 
##   comment               483      523       656       69 
##   description           520      651      1034      100 
##   essay                 913     1092      1569      183 
##   invitation             31       52       128        7 
##   letter                 90       70       111        8 
##   news                  983     1289      1979      259 
##   other                 107      116       250       48 
##   overview               18       35        78        3 
##   person_interv         173      227       306       61 
##   plot                    5        5        10        2 
##   program                 1        7        14        4 
##   review                209      346       482       35 
##   sport                 464      794      1095      172 
##   survey                 33       36        68        4 
##   topic_interv          306      374       518       49 
##   weather                 0        0        14        0 

# table(pdt30[,c(2,6)]) #this does the same thing 
# round(prop.table(table(pdt30[,c(2,6)])),4)*100 

Null Hypothesis and Alternative Hypothesis 
We have two categorical variables - genre and discourse_class, and we want to find out 
whether they are dependent from each other. The most common statistical test for this task 
(dependency and two categorical variables) is Pearson's Chi-Squared test (aka Chisq). It will 
test whether the genres differ in their proportions of the discourse classes enough to be 
such very unlikely by mere chance. The test measures the probability of the differences 
arising by chance. 

What is actually chance in this context? It's basically the chance that having taken a few 
different annotated texts from each genre would result in yet very different results showing 
different trends; e.g.: our sample suggests that the genres do not differ so much in 
expansion (most frequent everywhere) and temporal(least frequent everywhere), but there 
are differences in proportions of contrast and contingency to each other. If this occurred by 
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chance, a different sample would suggest, say, that the genres differ most strongly in the 
proportion of temporal relations to contingency, a yet different sample would suggest that 
there are no differences between genres at all, etc. 

So, the Chi-Squared test tests the probability of chance in the observed results. If this 
probability is low enough, we can reject the Null Hypothesis, which says that there is no 
dependency between genre and discourse class and all differences we may observe are 
plain chance. When we can reject the Null Hypothesis, we can claim that we have observed 
a statistically significant dependency between the two variables. However, we may never 
say that we see our hypothesis (aka Alternative Hypothesis) verified or confirmed, since 
there is no way in statistics to do that! All we can do is reject the Null Hypothesis. The 
probability of chance at which we decide that something does not happen by chance (aka 
alpha level)must be determined BEFORE the experiment. The usual alpha level lies at 0.05 
p-value, which we will get from the test. (E.g. clinical studies may require an even lower 
alpha level to make really sure the effect of a tested drug has not occurred by chance.) 

One more word of caution - statistical significance does not say anything about the effect 
size. The proportions may differ with almost no probability of chance, so that we could see 
the difference in any sample we would take, but at the same time, the difference can always 
be equally small! 

As a first approximation, we run the Pearson Chi-Squared test on the contingency table we 
have made: 

summary(cont_tab) 

## Call: xtabs(formula = ~genre + discourse_class, data = pdt30) 
## Number of cases in table: 20555  
## Number of factors: 2  
## Test for independence of all factors: 
##  Chisq = 297.53, df = 54, p-value = 2.257e-35 
##  Chi-squared approximation may be incorrect 

At first sight, we have got an interesting result, since the p-value is much lower than 0.05. 
However, we have got a warning that Chi-squared approximation may be incorrect. 
This means that our data has violated some prerequisite of this test and possibly 
invalidated the entire test result. 

The prerequisites for Chisq are: 

1. The data are not correlated (e.g. a before/after scenario) 
2. The sample is large enough. Large enough means that each cell having at least 5 

EXPECTED observations. 

The first point is a non-issue in our setup, but let's have a look at the data again how many 
observations we have in the cells. These are of course just observed results, but we will have 
the chance to identify the most problematic cells at first glance. 

The first diagram shows the genrewise proportions between discourse classes in absolute 
numbers. 
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ggplot(pdt30, aes(x = genre, fill = discourse_class)) + geom_bar(position = "
stack") +  
    theme(axis.text.x = element_text(angle = 90)) 
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To show the proportions better and preserve the dimension of the data size as much as 
possible, we transform the barplot with stacked bars to a barplot with filled bars and add a 
rug with data points jittered and made transparent. 

ggplot(pdt30, aes(x = genre, fill = discourse_class)) + geom_bar(position = "
fill") +  
    theme(axis.text.x = element_text(angle = 90)) + geom_point(aes(y = -0.23)
,  
    size = 0.75, alpha = 0.3, position = position_jitter(width = 0.4,  
        height = 0.2)) + ylab("relative frequency") 
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We get perhaps the best view using a simple mosaic plot. The width of the panels represents 
their proportion of the total data size. 

plotluck(data = pdt30, formula = discourse_class ~ genre) 
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Two last views on the genrewise proportions between discourse classes in faceted 
diagrams. We create a base of the two plots to share and store it in a variable: 

mappings_01 <- ggplot(data = pdt30, aes(x = discourse_class,  
    fill = discourse_class)) 

A faceted barplot of the four discourse classes with unified y-scale. 

mappings_01 + geom_bar(position = "dodge") + facet_wrap(~genre,  
    scales = "fixed") + theme(axis.text.x = element_blank()) 

 The same barplot 
with individual y-scales - better view of proportions. 
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mappings_01 + geom_bar(position = "dodge") + facet_wrap(~genre,  
    scales = "free_y") + theme(axis.text.x = element_blank()) +  
    scale_y_continuous(breaks = scales::pretty_breaks()) 

 

Apparently there is a problem with the weather genre lacking three discourse classes of 
four expected. This one is sure to be discarded or merged with another one, if Chisq is to be 
used. Other potentially problematic genres are caption, plot, and program. 

Let's compute how many EXPECTED observations our data set has to be absolutely sure 
that the test outcome is reliable. 

What are the EXPECTED values? These are values that would be ideally observed if there 
was no dependency between the variables. The test will compare the expected and the 
observed values for each cell and estimate the probability with which they differ by chance. 

The definition of chisq: 

chisq = sum((observed - expected)^2/expected) 

The expected value is computed as 
row_total*column_total/total_number_of_observations 

  



22 
 

Computing Expected Observations for Each Cell in a Contingency table 
Our contingency table again: 

cont_tab 

##                discourse_class 
## genre           CONTINGENCY CONTRAST EXPANSION TEMPORAL 
##   advice                242      182       293       24 
##   caption                 8        9        20        1 
##   collection            115      130       225       37 
##   comment               483      523       656       69 
##   description           520      651      1034      100 
##   essay                 913     1092      1569      183 
##   invitation             31       52       128        7 
##   letter                 90       70       111        8 
##   news                  983     1289      1979      259 
##   other                 107      116       250       48 
##   overview               18       35        78        3 
##   person_interv         173      227       306       61 
##   plot                    5        5        10        2 
##   program                 1        7        14        4 
##   review                209      346       482       35 
##   sport                 464      794      1095      172 
##   survey                 33       36        68        4 
##   topic_interv          306      374       518       49 
##   weather                 0        0        14        0 

For the sake of further computations, we transform it into a matrix. Only the data structure 
changes. 

(cont_matrix <- as.matrix(cont_tab)) 

##                discourse_class 
## genre           CONTINGENCY CONTRAST EXPANSION TEMPORAL 
##   advice                242      182       293       24 
##   caption                 8        9        20        1 
##   collection            115      130       225       37 
##   comment               483      523       656       69 
##   description           520      651      1034      100 
##   essay                 913     1092      1569      183 
##   invitation             31       52       128        7 
##   letter                 90       70       111        8 
##   news                  983     1289      1979      259 
##   other                 107      116       250       48 
##   overview               18       35        78        3 
##   person_interv         173      227       306       61 
##   plot                    5        5        10        2 
##   program                 1        7        14        4 
##   review                209      346       482       35 
##   sport                 464      794      1095      172 
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##   survey                 33       36        68        4 
##   topic_interv          306      374       518       49 
##   weather                 0        0        14        0 

The matrix still contains our contingency table. Each cell contains our observed values. The 
expected value in a cell is computed as 
row_total*column_total/total_number_of_observations. Let's compute the sums for 
rows and columns as well as the sum of observations: 

sum(cont_matrix) 

## [1] 20555 

colSums(cont_matrix) 

## CONTINGENCY    CONTRAST   EXPANSION    TEMPORAL  
##        4701        5938        8850        1066 

rowSums(cont_matrix) 

##        advice       caption    collection       comment   description  
##           741            38           507          1731          2305  
##         essay    invitation        letter          news         other  
##          3757           218           279          4510           521  
##      overview person_interv          plot       program        review  
##           134           767            22            26          1072  
##         sport        survey  topic_interv       weather  
##          2525           141          1247            14 

We put these numbers into the formula and compute the expected value for the first row of 
the first column: 

row <- 1 
column <- 1 
colSums(cont_matrix)[column]/sum(cont_matrix) * rowSums(cont_matrix)[row]/sum
(cont_matrix) *  
    sum(cont_matrix) 

## CONTINGENCY  
##    169.4693 

Let's transform this into a new function called expected_cell, with which we can later 
check random cells after a bulk computation for all cells at once. The function needs the 
name of the matrix and the indices of the row and column of the cell we ask about. 

expected_cell <- function(my_matrix, my_row, my_column) { 
    my_cell <- colSums(my_matrix)[my_column]/sum(colSums(my_matrix)) *  
        rowSums(my_matrix)[my_row]/sum(colSums(my_matrix)) *  
        sum(colSums(my_matrix)) 
    my_cell <- round(my_cell, 1) 
    return(my_cell) 
} 
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expected_cell(my_matrix = cont_matrix, my_row = 1, my_column = 1) 

## CONTINGENCY  
##       169.5 

expected_cell(my_matrix = cont_matrix, my_row = 2, my_column = 1) 

## CONTINGENCY  
##         8.7 

Now we can do a bulk computation very fast by calculating with the entire matrix at the 
same time. We can perform all arithmetic operations on two numerical matrices that we 
can perform on two numbers. When the matrices have the same dimensions, the given 
arithmetic operation is performed for each corresponding pair and the outcome is a matrix 
of the resulting values, which again has the same dimensions as the original matrices. 

Let's illustrate it on a small example: 

(first_matrix <- matrix(c(1, 2, 10, 20, 3, 30), nrow = 2, ncol = 2,  
    byrow = FALSE)) 

##      [,1] [,2] 
## [1,]    1   10 
## [2,]    2   20 

(second_matrix <- matrix(c(1, 2, 10, 20, 3, 30), nrow = 2, ncol = 2,  
    byrow = TRUE)) 

##      [,1] [,2] 
## [1,]    1    2 
## [2,]   10   20 

(third_matrix <- first_matrix + second_matrix) 

##      [,1] [,2] 
## [1,]    2   12 
## [2,]   12   40 

The first matrix, first row, first column got added to the second matrix, first row, first 
column, etc. Note the byrow parameter in the matrix function. It tells the function how to fill 
the matrix with the vector we feed it - column-wise (default) or row-wise. The vector was 
identical in both cases. It was the byrow parameter that made the resulting matrices look 
differently! We are going to use this trick soon. 

Back to our contingency table and the expected-value formula 

row_total*column_total/total_number_of_observations. To bulk-compute all cells at 
once, we need to multiply two matrices and then to multiply the resulting matrix with the 
total number of observations. 
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The first matrix will have the same dimensions as our contingency table. We will fill each 
column with the sum of values in the given column divided by the number of observations. 
There are 19 observations ( = rows) of 4 variables ( = columns). That means we have to 
repeat each column sum nineteen times. We will get a 76-value vector, which we will break 
down into a 4 x 19 matrix filled by column. 

This is the numbers we will repeat 19 times each: 

colSums(cont_matrix)/sum(cont_matrix) 

## CONTINGENCY    CONTRAST   EXPANSION    TEMPORAL  
##  0.22870348  0.28888348  0.43055218  0.05186086 

Here is how we create the vector: 

rep(colSums(cont_matrix)/sum(cont_matrix), each = 19) 

## CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY  
##  0.22870348  0.22870348  0.22870348  0.22870348  0.22870348  0.22870348  
## CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY  
##  0.22870348  0.22870348  0.22870348  0.22870348  0.22870348  0.22870348  
## CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY CONTINGENCY  
##  0.22870348  0.22870348  0.22870348  0.22870348  0.22870348  0.22870348  
## CONTINGENCY    CONTRAST    CONTRAST    CONTRAST    CONTRAST    CONTRAST  
##  0.22870348  0.28888348  0.28888348  0.28888348  0.28888348  0.28888348  
##    CONTRAST    CONTRAST    CONTRAST    CONTRAST    CONTRAST    CONTRAST  
##  0.28888348  0.28888348  0.28888348  0.28888348  0.28888348  0.28888348  
##    CONTRAST    CONTRAST    CONTRAST    CONTRAST    CONTRAST    CONTRAST  
##  0.28888348  0.28888348  0.28888348  0.28888348  0.28888348  0.28888348  
##    CONTRAST    CONTRAST   EXPANSION   EXPANSION   EXPANSION   EXPANSION  
##  0.28888348  0.28888348  0.43055218  0.43055218  0.43055218  0.43055218  
##   EXPANSION   EXPANSION   EXPANSION   EXPANSION   EXPANSION   EXPANSION  
##  0.43055218  0.43055218  0.43055218  0.43055218  0.43055218  0.43055218  
##   EXPANSION   EXPANSION   EXPANSION   EXPANSION   EXPANSION   EXPANSION  
##  0.43055218  0.43055218  0.43055218  0.43055218  0.43055218  0.43055218  
##   EXPANSION   EXPANSION   EXPANSION    TEMPORAL    TEMPORAL    TEMPORAL  
##  0.43055218  0.43055218  0.43055218  0.05186086  0.05186086  0.05186086  
##    TEMPORAL    TEMPORAL    TEMPORAL    TEMPORAL    TEMPORAL    TEMPORAL  
##  0.05186086  0.05186086  0.05186086  0.05186086  0.05186086  0.05186086  
##    TEMPORAL    TEMPORAL    TEMPORAL    TEMPORAL    TEMPORAL    TEMPORAL  
##  0.05186086  0.05186086  0.05186086  0.05186086  0.05186086  0.05186086  
##    TEMPORAL    TEMPORAL    TEMPORAL    TEMPORAL  
##  0.05186086  0.05186086  0.05186086  0.05186086 

Here comes the matrix of these column sums: 

(mat_cols <- rep(colSums(cont_matrix)/sum(cont_matrix), each = nrow(cont_matr
ix)) %>%  
    matrix(nrow = nrow(cont_matrix), ncol = ncol(cont_matrix))) 

##            [,1]      [,2]      [,3]       [,4] 
##  [1,] 0.2287035 0.2888835 0.4305522 0.05186086 
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##  [2,] 0.2287035 0.2888835 0.4305522 0.05186086 
##  [3,] 0.2287035 0.2888835 0.4305522 0.05186086 
##  [4,] 0.2287035 0.2888835 0.4305522 0.05186086 
##  [5,] 0.2287035 0.2888835 0.4305522 0.05186086 
##  [6,] 0.2287035 0.2888835 0.4305522 0.05186086 
##  [7,] 0.2287035 0.2888835 0.4305522 0.05186086 
##  [8,] 0.2287035 0.2888835 0.4305522 0.05186086 
##  [9,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [10,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [11,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [12,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [13,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [14,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [15,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [16,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [17,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [18,] 0.2287035 0.2888835 0.4305522 0.05186086 
## [19,] 0.2287035 0.2888835 0.4305522 0.05186086 

Now the matrix of the row sums. Mind that the vector will have to be broken into a matrix 
by rows! 

(mat_rows <- rep(rowSums(cont_matrix)/sum(cont_matrix), each = ncol(cont_matr
ix)) %>%  
    matrix(nrow = nrow(cont_matrix), ncol = ncol(cont_matrix),  
        byrow = TRUE)) 

##               [,1]         [,2]         [,3]         [,4] 
##  [1,] 0.0360496230 0.0360496230 0.0360496230 0.0360496230 
##  [2,] 0.0018486986 0.0018486986 0.0018486986 0.0018486986 
##  [3,] 0.0246655315 0.0246655315 0.0246655315 0.0246655315 
##  [4,] 0.0842130868 0.0842130868 0.0842130868 0.0842130868 
##  [5,] 0.1121381659 0.1121381659 0.1121381659 0.1121381659 
##  [6,] 0.1827779129 0.1827779129 0.1827779129 0.1827779129 
##  [7,] 0.0106056920 0.0106056920 0.0106056920 0.0106056920 
##  [8,] 0.0135733398 0.0135733398 0.0135733398 0.0135733398 
##  [9,] 0.2194113354 0.2194113354 0.2194113354 0.2194113354 
## [10,] 0.0253466310 0.0253466310 0.0253466310 0.0253466310 
## [11,] 0.0065190951 0.0065190951 0.0065190951 0.0065190951 
## [12,] 0.0373145220 0.0373145220 0.0373145220 0.0373145220 
## [13,] 0.0010702992 0.0010702992 0.0010702992 0.0010702992 
## [14,] 0.0012648991 0.0012648991 0.0012648991 0.0012648991 
## [15,] 0.0521527609 0.0521527609 0.0521527609 0.0521527609 
## [16,] 0.1228411579 0.1228411579 0.1228411579 0.1228411579 
## [17,] 0.0068596449 0.0068596449 0.0068596449 0.0068596449 
## [18,] 0.0606665045 0.0606665045 0.0606665045 0.0606665045 
## [19,] 0.0006810995 0.0006810995 0.0006810995 0.0006810995 
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The first matrix (mat_cols) multiplied with the second matrix (mat_rows) multiplied by the 
total of all observations will give us the matrix of expected values. We will round the result 
to one decimal place at the same time. 

(exp_matrix <- (mat_cols * mat_rows * sum(cont_matrix)) %>% round(1)) 

##         [,1]   [,2]   [,3]  [,4] 
##  [1,]  169.5  214.1  319.0  38.4 
##  [2,]    8.7   11.0   16.4   2.0 
##  [3,]  116.0  146.5  218.3  26.3 
##  [4,]  395.9  500.1  745.3  89.8 
##  [5,]  527.2  665.9  992.4 119.5 
##  [6,]  859.2 1085.3 1617.6 194.8 
##  [7,]   49.9   63.0   93.9  11.3 
##  [8,]   63.8   80.6  120.1  14.5 
##  [9,] 1031.5 1302.9 1941.8 233.9 
## [10,]  119.2  150.5  224.3  27.0 
## [11,]   30.6   38.7   57.7   6.9 
## [12,]  175.4  221.6  330.2  39.8 
## [13,]    5.0    6.4    9.5   1.1 
## [14,]    5.9    7.5   11.2   1.3 
## [15,]  245.2  309.7  461.6  55.6 
## [16,]  577.5  729.4 1087.1 130.9 
## [17,]   32.2   40.7   60.7   7.3 
## [18,]  285.2  360.2  536.9  64.7 
## [19,]    3.2    4.0    6.0   0.7 

We will give the matrix back the original row and column names for easier indexing. 

row.names(exp_matrix) <- row.names(cont_matrix) 
colnames(exp_matrix) <- colnames(cont_matrix) 
exp_matrix 

##               CONTINGENCY CONTRAST EXPANSION TEMPORAL 
## advice              169.5    214.1     319.0     38.4 
## caption               8.7     11.0      16.4      2.0 
## collection          116.0    146.5     218.3     26.3 
## comment             395.9    500.1     745.3     89.8 
## description         527.2    665.9     992.4    119.5 
## essay               859.2   1085.3    1617.6    194.8 
## invitation           49.9     63.0      93.9     11.3 
## letter               63.8     80.6     120.1     14.5 
## news               1031.5   1302.9    1941.8    233.9 
## other               119.2    150.5     224.3     27.0 
## overview             30.6     38.7      57.7      6.9 
## person_interv       175.4    221.6     330.2     39.8 
## plot                  5.0      6.4       9.5      1.1 
## program               5.9      7.5      11.2      1.3 
## review              245.2    309.7     461.6     55.6 
## sport               577.5    729.4    1087.1    130.9 
## survey               32.2     40.7      60.7      7.3 
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## topic_interv        285.2    360.2     536.9     64.7 
## weather               3.2      4.0       6.0      0.7 

Let's perform a few random checks with our one-cell function expected_cell: 

expected_cell(my_matrix = exp_matrix, my_row = 1, my_column = 4) 

## TEMPORAL  
##     38.4 

expected_cell(my_matrix = exp_matrix, my_row = 19, my_column = 1) 

## CONTINGENCY  
##         3.2 

expected_cell(my_matrix = exp_matrix, my_row = 3, my_column = 2) 

## CONTRAST  
##    146.5 

The results of cell-wise vs. bulk-wise computations agree. Our matrix of expected values is 
correct. 

Finally, we will identify the names of rows (i.e. genres), in which the expected number of 
observations is less than 5. 

which(exp_matrix < 5, arr.ind = TRUE) 

##         row col 
## weather  19   1 
## weather  19   2 
## caption   2   4 
## plot     13   4 
## program  14   4 
## weather  19   4 

This shows that, to be able to use the chisq test, we have to remove weather, caption, plot, 
and program, alternatively merge them and test the expected values again. However, let's 
assume that an umbrella genre does not make sense. We will rather merge all these with 
other. This means that, in our pdt30 data set, all genre values equal to these will be 
replaced with other 

levels(pdt30$genre)[levels(pdt30$genre) %in% c("weather", "caption",  
    "plot", "program")] <- "other" 

Check 

sum(pdt30$genre %in% c("weather", "caption", "plot", "program")) 

## [1] 0 

head(pdt30_original[which(pdt30_original$genre %in% c("weather",  
    "caption", "plot", "program")), ]) 
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## # A tibble: 6 × 6 
##    document_id   genre number_of_sentences         sentence_id 
##         <fctr>  <fctr>               <int>              <fctr> 
## 1 cmpr9410_051 caption                   2 t-cmpr9410-051-p3s2 
## 2 cmpr9415_055 caption                   2 t-cmpr9415-055-p3s1 
## 3 cmpr9415_056 caption                   2 t-cmpr9415-056-p3s1 
## 4   ln94200_10    plot                  10   t-ln94200-10-p3s2 
## 5   ln94200_11    plot                   6   t-ln94200-11-p2s2 
## 6   ln94200_12 program                   9   t-ln94200-12-p2s5 
## # ... with 2 more variables: discourse_type <fctr>, discourse_class <fctr> 

head(pdt30[which(pdt30_original$genre %in% c("weather", "caption",  
    "plot", "program")), ]) 

## # A tibble: 6 × 6 
##    document_id  genre number_of_sentences         sentence_id 
##         <fctr> <fctr>               <int>              <fctr> 
## 1 cmpr9410_051  other                   2 t-cmpr9410-051-p3s2 
## 2 cmpr9415_055  other                   2 t-cmpr9415-055-p3s1 
## 3 cmpr9415_056  other                   2 t-cmpr9415-056-p3s1 
## 4   ln94200_10  other                  10   t-ln94200-10-p3s2 
## 5   ln94200_11  other                   6   t-ln94200-11-p2s2 
## 6   ln94200_12  other                   9   t-ln94200-12-p2s5 
## # ... with 2 more variables: discourse_type <fctr>, discourse_class <fctr> 

Now we can run the chisq test. 

(result <- chisq.test(pdt30$genre, pdt30$discourse_class)) 

##  
##  Pearson's Chi-squared test 
##  
## data:  pdt30$genre and pdt30$discourse_class 
## X-squared = 273.34, df = 42, p-value < 2.2e-16 

The p-value is much less than 0.05, so we can reject the null hypothesis that denies any 
association between genre and distribution of discourse classes. No warning occurs, so we 
can trust it. Let's look at the results closer, though, to see which discourse classes and 
genres have contributed the most and the least and how to this result. We will be able to see 
which genres and discourse classes attract/repel each other. All this information is hidden 
in the object that is returned by the chisq.test function. It is a list. 

str(result) 

## List of 9 
##  $ statistic: Named num 273 
##   ..- attr(*, "names")= chr "X-squared" 
##  $ parameter: Named int 42 
##   ..- attr(*, "names")= chr "df" 
##  $ p.value  : num 1.1e-35 
##  $ method   : chr "Pearson's Chi-squared test" 
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##  $ data.name: chr "pdt30$genre and pdt30$discourse_class" 
##  $ observed : 'table' int [1:15, 1:4] 242 121 115 483 520 913 31 90 983 18 
... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ pdt30$genre          : chr [1:15] "advice" "other" "collection" "
comment" ... 
##   .. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL" 
##  $ expected : num [1:15, 1:4] 169 142 116 396 527 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ pdt30$genre          : chr [1:15] "advice" "other" "collection" "
comment" ... 
##   .. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL" 
##  $ residuals: table [1:15, 1:4] 5.5716 -1.7642 -0.0885 4.3783 -0.3119 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ pdt30$genre          : chr [1:15] "advice" "other" "collection" "
comment" ... 
##   .. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL" 
##  $ stdres   : table [1:15, 1:4] 6.462 -2.04 -0.102 5.21 -0.377 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ pdt30$genre          : chr [1:15] "advice" "other" "collection" "
comment" ... 
##   .. ..$ pdt30$discourse_class: chr [1:4] "CONTINGENCY" "CONTRAST" "EXPANS
ION" "TEMPORAL" 
##  - attr(*, "class")= chr "htest" 

The elements observed and expected contain the contingency tables of observed and 
expected values, respectively. The expected values are exactly those we have computed 
before (except for the genres we have merged). Unfortunately, chisq.test only computes 
the expected values when it is able to proceed correctly, which is why we had to find out 
and remove the problematic genres manually. 

round(result$expected, 1) 

##                pdt30$discourse_class 
## pdt30$genre     CONTINGENCY CONTRAST EXPANSION TEMPORAL 
##   advice              169.5    214.1     319.0     38.4 
##   other               142.0    179.4     267.4     32.2 
##   collection          116.0    146.5     218.3     26.3 
##   comment             395.9    500.1     745.3     89.8 
##   description         527.2    665.9     992.4    119.5 
##   essay               859.2   1085.3    1617.6    194.8 
##   invitation           49.9     63.0      93.9     11.3 
##   letter               63.8     80.6     120.1     14.5 
##   news               1031.5   1302.9    1941.8    233.9 
##   overview             30.6     38.7      57.7      6.9 
##   person_interv       175.4    221.6     330.2     39.8 
##   review              245.2    309.7     461.6     55.6 
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##   sport               577.5    729.4    1087.1    130.9 
##   survey               32.2     40.7      60.7      7.3 
##   topic_interv        285.2    360.2     536.9     64.7 

expected_cell(cont_matrix, 1, 1)  #cf. matrix before genre merging  

## CONTINGENCY  
##       169.5 

Standardized residuals (stdres) will tell more about the effect of different genre vs. 
discourse class combinations. They express the difference between the expected and the 
observed values (observed minus expected, the whole divided by the square root of 
expected). Standardized residuals give a better comparison than residuals (residuals), 
because they abstract from the fact that with the same difference x, a large number - x is 
always larger than a small number - x. 

result$stdres 

##                pdt30$discourse_class 
## pdt30$genre     CONTINGENCY   CONTRAST  EXPANSION   TEMPORAL 
##   advice          6.4615765 -2.6468625 -1.9676630 -2.4346740 
##   other          -2.0398666 -3.8116713  3.3434255  4.1887851 
##   collection     -0.1020027 -1.6335066  0.6094034  2.1712639 
##   comment         5.2095058  1.2713551 -4.5289432 -2.3526586 
##   description    -0.3769206 -0.7255357  1.8561264 -1.9478011 
##   essay           2.3100952  0.2653760 -1.7707918 -0.9637207 
##   invitation     -3.0571787 -1.6490094  4.6946794 -1.3221224 
##   letter          3.7590890 -1.4095414 -1.1107431 -1.7585667 
##   news           -1.9443364 -0.5155531  1.2665335  1.9083080 
##   overview       -2.6096549 -0.7095047  3.5542873 -1.5436120 
##   person_interv  -0.2116568  0.4405930 -1.8010955  3.5221289 
##   review         -2.7016956  2.5136831  1.2955250 -2.9136409 
##   sport          -5.7410089  3.0270799  0.3371150  3.9337022 
##   survey          0.1514688 -0.8823696  1.2445159 -1.2623203 
##   topic_interv    1.4474858  0.8871888 -1.1151822 -2.0648269 

The values with negative sign mean a repelling effect, the positive ones an attracting effect. 

Chisq Warnings 
• NEVER compute chisq on percentages!!! The contingency table has to contain absolute 

frequencies. 
• Chisq does not give you the effect size. What you see in the residuals gives you a hint 

about which categories attract or repel each other and you can compare the numbers 
as strengths of these partial trends, but you cannot get a total effect size by adding 
them together or whatever you might think about!!! 
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Alternative to Chisq: Fisher's exact test 
What about if you cannot use chisq but really need to test your two categorical variables on 
dependence? Fisher exact test. It is implemented in R, but it is not designed for as many 
categories as we have. Strictly speaking, it is designed for 2x2 tables only, while we have a 
19 x 4 table. 

It will certainly throw an error: 

fisher.test(pdt30$genre, pdt30$discourse_class) 

Error in fisher.test(pdt30\$genre, pdt30\$discourse_class) :  
FEXACT error 5. 
The hash table key cannot be computed because the largest key is larger than  
the largest representable int. 
The algorithm cannot proceed.Reduce the workspace size or use another algorit
hm. 

So if we really really need this test, we have to divide the task into several smaller tables. 
Let's try and compute whether there is a significant difference in the distribution of 
discourse classes between advice and invitation: 

adv_invit <- dplyr::filter(pdt30, genre %in% c("advice", "invitation")) 
dplyr::glimpse(adv_invit) 

## Observations: 959 
## Variables: 6 
## $ document_id         <fctr> cmpr9410_003, cmpr9410_003, cmpr9410_003,... 
## $ genre               <fctr> advice, advice, advice, advice, advice, a... 
## $ number_of_sentences <int> 16, 16, 16, 16, 16, 29, 29, 29, 29, 29, 29... 
## $ sentence_id         <fctr> t-cmpr9410-003-p5s2, t-cmpr9410-003-p5s4,... 
## $ discourse_type      <fctr> conj, conj, cond, reason, reason, restr, ... 
## $ discourse_class     <fctr> EXPANSION, EXPANSION, CONTINGENCY, CONTIN... 

fisher.test(adv_invit$genre, adv_invit$discourse_class, alternative = "two.si
ded") 

 Error in fisher.test(adv_invit$genre,  
 adv_invit$discourse_class, alternative = "two.sided") :  
 Bug in FEXACT: gave negative key 

A bit of trying reveals that at the moment of writing this code (probably conditioned by the 
given combination computing power, OS, R version etc.), Fisher's test could pass with three 
of the four labels (no matter which they were) and two genres: 

adv_invit_contingency <- dplyr::filter(adv_invit, discourse_class %in%  
    c("CONTINGENCY", "TEMPORAL", "CONTRAST")) %>% select(one_of("genre",  
    "discourse_class")) 
dplyr::glimpse(adv_invit_contingency) 

## Observations: 538 
## Variables: 2 
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## $ genre           <fctr> advice, advice, advice, advice, advice, advic... 
## $ discourse_class <fctr> CONTINGENCY, CONTINGENCY, CONTINGENCY, CONTRA... 

result <- fisher.test(adv_invit_contingency$genre, adv_invit_contingency$disc
ourse_class) 
result 

##  
##  Fisher's Exact Test for Count Data 
##  
## data:  adv_invit_contingency$genre and adv_invit_contingency$discourse_cla
ss 
## p-value = 0.002287 
## alternative hypothesis: two.sided 

Testing all combinations of genres and labels would require a dedicated script, but calling 
the test function itself is easy. Fisher test has one more advantage over chisq: you can 
determine whether your alternative hypothesis is two-sided or one-sided in eiter direction. 

If really performed, we would probably have to create a special 2x2 table for each category, 
e.g. EXPANSION - NOT EXPANSION. If we choose two existing categories instead (e.g. 
EXPANSION - TEMPORAL), we are discarding data and biasing the results. 

One-sided vs. Two-Sided Alternative Hypothesis 
Two-sided - Less specific. You simply claim: "The two things are different." One-sided - 
More specific. You claim: "One thing is more/less ... than the other." When you formulate 
your hypothesis as one-sided, you need less evidence for the p-value to be low, i.e. result 
significant, than if you formulated your hypothesis as one-sided. However, you should 
decide BEFORE you compute it. Reformulating your hypothesis from two-sided to one-
sided after you have obtained non-significant results from your two-sided hypothesis 
equals cheating!!! Also, when you formulate your hypothesis as one-sided just as a 
precaution, you run the risk of missing the effect on the other side. Imagine you would test a 
drug to increase the size of orchard apples and really needed to sell it, so you would test it 
with the one-sided alternative hypothesis "apple trees treated with my drug bear bigger 
apples", which would prove significant, but in fact, the trees treated with your drug would 
also bear significantly more really small apples at the same time! 
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