Background

- Bachelor degree at CTU in Prague
 - in Electrical Engineering and Informatics, Computer Science
 - abandoned Computer Graphics master program
- freelance and hobby experience with various programming languages
- interest in natural languages, backed up by frequent active use of Esperanto
- technical skills vs. scientific research?
Current Projects

- **Annotation of coreference in PCEDT**
 - helped by and collaborating with MM, JŠ, ZŽ
 - PEDT/PCEDT ↔ TectoMT data round-trip
 - automatic grammatical coreference
 - TrEd extension maintenance
 - data distribution and technical support to annotators

- **Diploma thesis supervised by Pavel Pecina**
 - Automatic acquisition of translation dictionaries from parallel corpora
Wider view

- Purpose
 - human-readable
 - computer-readable
 - MT only

- Data source
 - parallel corpora × comparable corpora
 - plain text × information rich (i.e. Annotated)

- Method
 - supervised × unsupervised
Automatic Dictionary Acquisition

- Methods; things to consider
 - domain specificity
 - language dependency
 - coverage; recall and accuracy trade-off
 - time and memory complexity for large corpora

- Output
 - plain word-pairs, probabilistic dictionary, translation confidence
 - evaluation method (AER, BLEU)
The thesis, guideliness

Parallel corpora, being the main source of training data for MT systems, can also be used for a simpler task — automatic acquisition of translation dictionary. The goal is to provide possible translational equivalents (in the target language) for each word of the source language, based on trans-cooccurrence statistics collected in a corpus.
Automatic Dictionary Acquisition

- w-alignment $\times t$-alignment?

<table>
<thead>
<tr>
<th></th>
<th>Věděl</th>
<th>,</th>
<th>také</th>
<th>že</th>
<th>to</th>
<th>není</th>
<th>.</th>
<th>výjimečného</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1.0053</td>
<td>0.1962</td>
<td>0.2136</td>
<td>0.2036</td>
<td>0.2382</td>
<td>0.0750</td>
<td></td>
<td>0.1832</td>
<td></td>
</tr>
<tr>
<td>also</td>
<td>0.2792</td>
<td>1.0054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1167</td>
<td></td>
</tr>
<tr>
<td>knew</td>
<td>1.0054</td>
<td>0.6224</td>
<td>0.3678</td>
<td>0.7472</td>
<td></td>
<td>0.0815</td>
<td></td>
<td>0.3864</td>
<td></td>
</tr>
<tr>
<td>he</td>
<td>0.2144</td>
<td>0.3650</td>
<td>0.2467</td>
<td>0.5674</td>
<td>0.0996</td>
<td>0.1079</td>
<td></td>
<td>0.3506</td>
<td></td>
</tr>
<tr>
<td>was</td>
<td>0.9676</td>
<td>0.0883</td>
<td>0.0747</td>
<td>0.3851</td>
<td>0.4989</td>
<td>0.5417</td>
<td>0.4277</td>
<td>0.1105</td>
<td>0.2649</td>
</tr>
<tr>
<td>n't</td>
<td>0.1185</td>
<td>0.3902</td>
<td>0.2954</td>
<td>0.9560</td>
<td></td>
<td></td>
<td></td>
<td>0.3897</td>
<td></td>
</tr>
<tr>
<td>unique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1076</td>
<td>0.5051</td>
<td></td>
<td></td>
<td>0.9185</td>
</tr>
<tr>
<td></td>
<td>0.0829</td>
<td>0.0789</td>
<td>0.1884</td>
<td></td>
<td>0.9067</td>
<td>0.2414</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Approach

- discriminative method
 - × generative, noisy channel (e.g. GIZA++)
- model combining various association measures [Pavel Pecina 2006] and (would-be) linguistic features
- combinatoric algorithm for finding the optimal alignment (× incomplete sub-optimal search)
 - maximum weight edge cover [Jana Kravalová, 2007]
- feature engineering
Automatic Dictionary Acquisition

- Some history and names
 - 1994 Dekai Wu and Xuanyin Xia
 - 1996 Melamed
 - 2005 Moore
 - 2005 Taskar and Lacoste-Julien
 - 2006 Blunsom and Cohn
 - 2008 Niehues and Vogel
 - 2008 Wei Chen
 - 2009 Yang Liu et al.
Automatic Dictionary Acquisition

- discouraging results so far
 - GIZA++ baseline for intermediate WA
 AER = 0.186 P = 0.737 R = 0.926
 - Our best
 AER = 0.246 P = 0.705 R = 0.820
 /// SumSquaredError, QuasiNewton, 4:1, net 7:6:2

- still many things to try
 - more transparent model to see feature weights
 - collocations have to be addressed specifically
Automatic Dictionary Acquisition

The Framework (C++, extensibility, reusability?)

- Features
 - using AM and trans-cooccurrence statistics
 - not using AM, usually linguistically motivated
- generic features
 - parameters ~ idea
- derived features
 - base feature(s), derived bigram (parent, preceding)
- feature 'arity' (bigram/unigram only, row/col ...)
Thank you