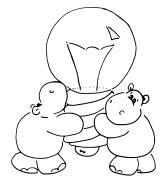
MorphoDiTa and NameTag Current State and Future Plans

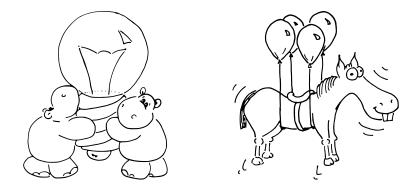
Milan Straka



ÚFAL Seminar Sedlec-Prčice

15th September 2014

Questions

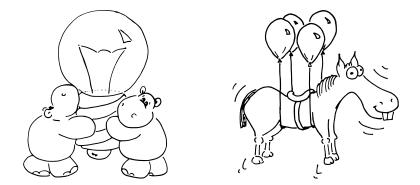

Please do not hesitate to ask questions.

MorphoDiTa
00000

Models 0000 Nam 000 Models

Plans 00

Questions


Please do not hesitate to ask questions.

Morpl	hoDiTa
0000	0

Models 0000 Name 000 Models

Plans 00

Questions

Please do not hesitate to ask questions.

Mor	pho	Di	
000	00		

Models 0000 Nam 000 Models

Plans 00

MorphoDiTa

• Morphological Dictionary and Tagger

• implementation of morphological dictionary and POS tagger, performing morphological analysis, morphological generation, POS+lemma tagging and UTF-8 tokenization

Morp	hoDiTa
0000	\sim

Models 0000 NameTag 000

Plans

Models

Plans 00

MorphoDiTa

- Morphological Dictionary and Tagger
- implementation of morphological dictionary and POS tagger, performing morphological analysis, morphological generation, POS+lemma tagging and UTF-8 tokenization

 MorphoDiTa
 Models
 Plans
 NameTag
 Models
 Plans
 Milan Straka

 ●0000
 0000
 000
 00
 00
 MorphoDiTa and NameTag

Goals

• to have a system

- providing Czech morphology and POS tagging
- with clear licences
- usable in multiple programming languages
- reasonably efficient in terms of speed, memory complexity and model sizes
- originally, the plan was to use existing systems
 - failed because of several reasons (unmaintained code, lack of features, inefficiency, etc.)
- after deciding to develop a new system, further goal arose

• support morphology of as many languages as possible

Morp	hoDiTa
0000	\sim

Models 0000 NameTag 000 Models

Plans 00

Goals

to have a system

- providing Czech morphology and POS tagging
- with clear licences
- usable in multiple programming languages
- reasonably efficient in terms of speed, memory complexity and model sizes
- originally, the plan was to use existing systems
 - failed because of several reasons (unmaintained code, lack of features, inefficiency, etc.)
- after deciding to develop a new system, further goal arose

• support morphology of as many languages as possible

Morpl	noDiTa
0000	0

Models 0000 NameTag 000 Models

Plans 00

Goals

to have a system

- providing Czech morphology and POS tagging
- with clear licences
- usable in multiple programming languages
- reasonably efficient in terms of speed, memory complexity and model sizes
- originally, the plan was to use existing systems
 - failed because of several reasons (unmaintained code, lack of features, inefficiency, etc.)
- after deciding to develop a new system, further goal arose

• support morphology of as many languages as possible

MorphoDiTa	
00000	

Models 0000 NameTag 000 Models

Plans 00

Goals

- to have a system
 - providing Czech morphology and POS tagging
 - with clear licences
 - usable in multiple programming languages
 - reasonably efficient in terms of speed, memory complexity and model sizes
- originally, the plan was to use existing systems
 - failed because of several reasons (unmaintained code, lack of features, inefficiency, etc.)
- after deciding to develop a new system, further goal arose
 - support morphology of as many languages as possible

Morph	noDiTa
0000	~

/lodels

NameTag 000

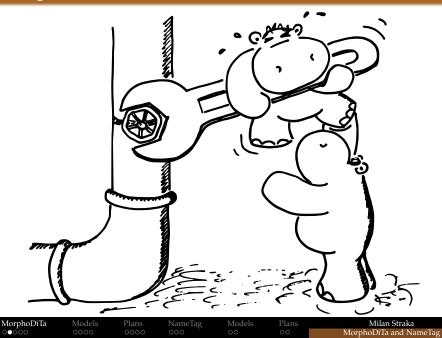
Plans

Models

Plans 00

Goals

- to have a system
 - providing Czech morphology and POS tagging
 - with clear licences
 - usable in multiple programming languages
 - reasonably efficient in terms of speed, memory complexity and model sizes
- originally, the plan was to use existing systems
 - failed because of several reasons (unmaintained code, lack of features, inefficiency, etc.)
- after deciding to develop a new system, further goal arose
 - support morphology of as many languages as possible


Morph	noDiTa
0000	~

Models 0000 NameTag 000

Plans

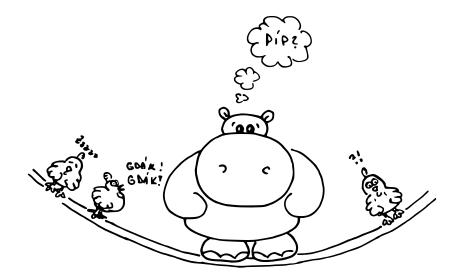
Models

Plans 00

Goals

- to have a system
 - providing Czech morphology and POS tagging
 - with clear licences
 - usable in multiple programming languages
 - reasonably efficient in terms of speed, memory complexity and model sizes
- originally, the plan was to use existing systems
 - failed because of several reasons (unmaintained code, lack of features, inefficiency, etc.)

after deciding to develop a new system, further goal arose
support morphology of as many languages as possible


MorphoDiTa	
0000	

Models 0000 NameTag 000

Plans

Models

Plans 00

 MorphoDiTa
 Models
 Plans
 Milan Straka

 o●000
 0000
 000
 00
 00
 MorphoDiTa and NameTag

Goals

- to have a system
 - providing Czech morphology and POS tagging
 - with clear licences
 - usable in multiple programming languages
 - reasonably efficient in terms of speed, memory complexity and model sizes
- originally, the plan was to use existing systems
 - failed because of several reasons (unmaintained code, lack of features, inefficiency, etc.)
- after deciding to develop a new system, further goal arose
 - support morphology of as many languages as possible

MorphoDiTa ○●○○○ Models 0000 NameTag 000

Plans

;]

Models

Plans 00

Morphological Dictionary

- use flat form lemma tag triplets on input
- create a binary representation that allows fast analysis and generation and is reasonably compact (should gracefully handle a gigaword)
 - dictionary compression exercise, no linguistics here
- provide guessers for out-of-dictionary words
 - currently two kinds based on prefixes/suffixes

MorphoDiTa	Mode
	0000

NameTag 000 Models

Plans 00

Morphological Dictionary

- use flat form lemma tag triplets on input
- create a binary representation that allows fast analysis and generation and is reasonably compact (should gracefully handle a gigaword)
 - dictionary compression exercise, no linguistics here
- provide guessers for out-of-dictionary words
 - currently two kinds based on prefixes/suffixes

MorphoDiTa

Models 0000 NameTag 000

Plans

Models

Plans 00

Morphological Dictionary

- use flat form lemma tag triplets on input
- create a binary representation that allows fast analysis and generation and is reasonably compact (should gracefully handle a gigaword)
 - dictionary compression exercise, no linguistics here
- provide guessers for out-of-dictionary words
 - currently two kinds based on prefixes/suffixes

Morp	hoDiTa
0000	0

- reimplementation of Morče and Featurama
 - averaged perceptron algorithm with Viterbi decoding manual feature specification
 - easily changed (CRF, ANN, SEARN, etc.)
- uses MorphoDiTa for morphological analysis
- external morphological analysis can be used
- allows custom model training

MorphoDiTa	
00000	

Plans

Models

Plans 00

- reimplementation of Morče and Featurama
 - averaged perceptron algorithm with Viterbi decoding manual feature specification
 - easily changed (CRF, ANN, SEARN, etc.)
- uses MorphoDiTa for morphological analysis
- external morphological analysis can be used
- allows custom model training

MorphoDiTa
00000

Models 0000 Plans N 0000 C

NameTag 000 Models 00 Plans 00

- reimplementation of Morče and Featurama
 - averaged perceptron algorithm with Viterbi decoding manual feature specification
 - easily changed (CRF, ANN, SEARN, etc.)
- uses MorphoDiTa for morphological analysis
- external morphological analysis can be used
- allows custom model training

MorphoDiTa	
00000	

Models 0000 NameTag 000

Plans

Models 00 Pla oc

Plans 00

- reimplementation of Morče and Featurama
 - averaged perceptron algorithm with Viterbi decoding manual feature specification
 - easily changed (CRF, ANN, SEARN, etc.)
- uses MorphoDiTa for morphological analysis
- external morphological analysis can be used
- allows custom model training

MorphoDiTa	
00000	

Models 0000 Plans I 0000

NameTag 000

Models 00

Plans 00

- reimplementation of Morče and Featurama
 - averaged perceptron algorithm with Viterbi decoding manual feature specification
 - easily changed (CRF, ANN, SEARN, etc.)
- uses MorphoDiTa for morphological analysis
- external morphological analysis can be used
- allows custom model training

MorphoDiTa	
00000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

MorphoDiTa ○○○○● Models 0000 NameTag 000

Plans

Models

Plans 00

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN

• Weblicht integration coming soon

MorphoDiTa	
0000	

- implemented in C++11
- available under LGPL licence
 - would anyone need BSD or some other?
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

MorphoDiTa	
00000	

Czech Morphological Model

- uses the morphological dictionary developed by prof. Hajič and others
 - recently released under $\heartsuit \heartsuit \heartsuit \heartsuit CC$ BY-NC-SA $\heartsuit \heartsuit \heartsuit$
- therefore available also under CC BY-NC-SA licence
- PDT tag set (15 positions) and CoNLL-2009 tag set
- contains guessers for morphological analysis
 - statistical guesser by prof. Hajič
 - prefix guesser compiled by J. Hlaváčová

Morpho	DiTa
00000	

Models ●000 NameTag 000 Models

Plans 00

Czech Morphological Model

- uses the morphological dictionary developed by prof. Hajič and others
 - recently released under $\heartsuit \heartsuit \heartsuit \heartsuit$ CC BY-NC-SA $\heartsuit \heartsuit \heartsuit$
- therefore available also under CC BY-NC-SA licence
- PDT tag set (15 positions) and CoNLL-2009 tag set
- contains guessers for morphological analysis
 - statistical guesser by prof. Hajič
 - prefix guesser compiled by J. Hlaváčová

Morph	oDiTa
00000	

Models ●000 NameTag 000 Models

Plans 00

- uses the morphological dictionary developed by prof. Hajič and others
 - recently released under $\heartsuit \heartsuit \heartsuit \heartsuit$ CC BY-NC-SA $\heartsuit \heartsuit \heartsuit$
- therefore available also under CC BY-NC-SA licence
- PDT tag set (15 positions) and CoNLL-2009 tag set
- contains guessers for morphological analysis
 - statistical guesser by prof. Hajič
 - prefix guesser compiled by J. Hlaváčová

MorphoDiTa

Models ●000 Plans NameTag 0000 000

z N

Models 00

Plans 00

- uses the morphological dictionary developed by prof. Hajič and others
 - recently released under $\heartsuit \heartsuit \heartsuit \heartsuit$ CC BY-NC-SA $\heartsuit \heartsuit \heartsuit$
- therefore available also under CC BY-NC-SA licence
- PDT tag set (15 positions) and CoNLL-2009 tag set
- contains guessers for morphological analysis
 - statistical guesser by prof. Hajič
 - prefix guesser compiled by J. Hlaváčová

MorphoDiTa

Models ●000 NameTag 000

Plans

Models

Plans 00

- uses the morphological dictionary developed by prof. Hajič and others
 - recently released under $\heartsuit \heartsuit \heartsuit \heartsuit$ CC BY-NC-SA $\heartsuit \heartsuit \heartsuit$
- therefore available also under CC BY-NC-SA licence
- PDT tag set (15 positions) and CoNLL-2009 tag set
- contains guessers for morphological analysis
 - statistical guesser by prof. Hajič
 - prefix guesser compiled by J. Hlaváčová

MorphoDiTa

Models ●000 NameTag 000

Plans

Models

Plans 00

- uses the morphological dictionary developed by prof. Hajič and others
 - recently released under $\heartsuit \heartsuit \heartsuit \heartsuit$ CC BY-NC-SA $\heartsuit \heartsuit \heartsuit$
- therefore available also under CC BY-NC-SA licence
- PDT tag set (15 positions) and CoNLL-2009 tag set
- contains guessers for morphological analysis
 - statistical guesser by prof. Hajič
 - prefix guesser compiled by J. Hlaváčová

Morpl	hoDiTa
0000	0

Models ●000 Plans 0000

NameTag 000 Models

Plans 00

- uses the morphological dictionary developed by prof. Hajič and others
 - recently released under $\heartsuit \heartsuit \heartsuit \heartsuit$ CC BY-NC-SA $\heartsuit \heartsuit \heartsuit$
- therefore available also under CC BY-NC-SA licence
- PDT tag set (15 positions) and CoNLL-2009 tag set
- contains guessers for morphological analysis
 - statistical guesser by prof. Hajič
 - prefix guesser compiled by J. Hlaváčová

MorphoDiTa

Models ●000 NameTag 000

Plans

Models

Plans 00

• reimplementation of Morče

- same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
- slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants
 - pos_only: only two first tag letters
 - no_dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants
 - poslonly: only two first tag letters
 - no_dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants
 - poslonly: only two first tag letters
 - no_dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants
 - poslonly: only two first tag letters
 - no_dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants
 - poslonly: only two first tag letters
 - no_dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants

Plans

- poslonly: only two first tag letters
- no_dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants

Plans

- poslonly: only two first tag letters
- no.dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants

Plans

- poslonly: only two first tag letters
- no_dia: no diacritical marks on input text

MorphoDiTa

Models 0●00 NameTag 000 Models

Plans 00

- reimplementation of Morče
 - same algorithm (averaged perceptron)
 - improved to be able to train on features not present in golden data
 - slightly improved feature set
 - better handling of lemmatization
- trained on trained on PDT 2.5
- also available under CC BY-NC-SA licence
- several additional variants

Plans

- pos_only: only two first tag letters
- no_dia: no diacritical marks on input text

MorphoDiTa

Models

NameTag 000 Models

Plans 00

Czech Morphology Performance

- Czech Morfflex contains 120M form-tag, 1M unique lemmas, 3992 tags; total size 6.7GB
- binary form of the dictionary uses 2MB (3000 smaller)
- analysis: pprox 600k analyzed forms per sec
- generation \approx 1M generated forms per sec

Czech POS Tagger Performance

	Task	Words/s	Model size
Morče	tag		178MB
Featurama	tag	2K	210MB
MorphoDiTa	tag		16MB
MorphoDiTa			16MB
MorphoDiTa	lemma+tag		
MorphoDiTa	tag-first two pos.	200K	2MB

MorphoDiTa

Models 00●0 Na 00

Plans

NameTag 000 Models

Plans

Czech Morphology Performance

- Czech Morfflex contains 120M form-tag, 1M unique lemmas, 3992 tags; total size 6.7GB
- binary form of the dictionary uses 2MB (3000 smaller)
- analysis: \approx 600k analyzed forms per sec
- generation pprox 1M generated forms per sec

Czech POS Tagger Performance

	Task	Words/s	Model size
Morče	tag		178MB
Featurama	tag	2K	210MB
MorphoDiTa	tag		16MB
MorphoDiTa			16MB
MorphoDiTa	lemma+tag		
MorphoDiTa	tag-first two pos.	200K	2MB

MorphoDiTa

Models 00●0 Na: 00

Plans

NameTag 000 Models

Plans

Mo

Czech Morphology Performance

- Czech Morfflex contains 120M form-tag, 1M unique lemmas, 3992 tags; total size 6.7GB
- binary form of the dictionary uses 2MB (3000 smaller)
- analysis: \approx 600k analyzed forms per sec
- generation pprox 1M generated forms per sec

Czech POS Tagger Performance

	Task	Words/s	Model size
Morče	tag		178MB
Featurama	tag	2K	210MB
MorphoDiTa	tag		16MB
MorphoDiTa			16MB
MorphoDiTa	lemma+tag		16MB
MorphoDiTa	tag-first two pos.	200K	2MB

MorphoDiTa

Models 00●0 NameTag 000

Plans

Models

s Plans

Czech Morphology Performance

- Czech Morfflex contains 120M form-tag, 1M unique lemmas, 3992 tags; total size 6.7GB
- binary form of the dictionary uses 2MB (3000 smaller)
- analysis: \approx 600k analyzed forms per sec
- generation ≈ 1 M generated forms per sec

Czech POS Tagger Performance

Plans

	Task	Words/s	Model size
Morče	tag		178MB
Featurama	tag	2K	210MB
MorphoDiTa	tag		16MB
MorphoDiTa			16MB
MorphoDiTa	lemma+tag		16MB
MorphoDiTa	tag-first two pos.	200K	2MB

Morp	ho	Di	Τa
0000	0		

Models 00●0 NameTag 000

N

Models

Plans

Czech Morphology Performance

- Czech Morfflex contains 120M form-tag, 1M unique lemmas, 3992 tags; total size 6.7GB
- binary form of the dictionary uses 2MB (3000 smaller)
- analysis: \approx 600k analyzed forms per sec
- generation \approx 1M generated forms per sec

Czech POS Tagger Performance

Tagger	Task	Accuracy	Words/s	Model size
Morče	tag	95.67%	1K	178MB
Featurama	tag	95.66%	2K	210MB
MorphoDiTa	tag	95.75%	10K	16MB
MorphoDiTa	lemma	97.80%	10K	16MB
MorphoDiTa	lemma+tag	95.03%	10K	16MB
MorphoDiTa	tag-first two pos.	99.18%	200K	2MB

MorphoDiTa

Models 00●0 Plans 0000

NameTag 000 Models

Plans

English Morphological Model

- morphological analyzer is a reimplementation of
 - POS tag analyzer Morphium by Johanka
 - lemmatizer developed by Martin Popel, based on morpha analyzer
- morphological generation is performed by running the morphological analyzer on an English word list and using the result as a morphological dictionary
 - (SCOWL Spell Checker Oriented Word Lists)

English POS Tagger Model

- trained on standard parts of WSJ
- released under CC BY-NC-SA licence
 - quite surprising decision caused by the fact that several European layers agreed with each other on this matter

Morp	hoDiTa
0000	0

Models ○○○● Plans 0000 NameTag 000 Models

Plans

English Morphological Model

- morphological analyzer is a reimplementation of
 - POS tag analyzer Morphium by Johanka
 - lemmatizer developed by Martin Popel, based on morpha analyzer
- morphological generation is performed by running the morphological analyzer on an English word list and using the result as a morphological dictionary
 - (SCOWL Spell Checker Oriented Word Lists)

English POS Tagger Model

- trained on standard parts of WSJ
- released under CC BY-NC-SA licence
 - quite surprising decision caused by the fact that several European layers agreed with each other on this matter

MorphoDil	
00000	

Models ○○○● Plans 0000 NameTag 000 Models

Plans 00

English Morphological Model

- morphological analyzer is a reimplementation of
 - POS tag analyzer Morphium by Johanka
 - lemmatizer developed by Martin Popel, based on morpha analyzer
- morphological generation is performed by running the morphological analyzer on an English word list and using the result as a morphological dictionary
 - (SCOWL Spell Checker Oriented Word Lists)

English POS Tagger Model

- trained on standard parts of WSJ
- released under CC BY-NC-SA licence
 - quite surprising decision caused by the fact that several European layers agreed with each other on this matter

MorphoDil	
00000	

NameTag 000

Models

Plans 00

English Morphological Model

- morphological analyzer is a reimplementation of
 - POS tag analyzer Morphium by Johanka
 - lemmatizer developed by Martin Popel, based on morpha analyzer
- morphological generation is performed by running the morphological analyzer on an English word list and using the result as a morphological dictionary
 - (SCOWL Spell Checker Oriented Word Lists)

English POS Tagger Model

- trained on standard parts of WSJ
- released under CC BY-NC-SA licence
 - quite surprising decision caused by the fact that several European layers agreed with each other on this matter

MorphoDiTa 00000 Models ○○○● NameTag 000

Plans

Models 00

ls

Plans 00

English Morphological Model

- morphological analyzer is a reimplementation of
 - POS tag analyzer Morphium by Johanka
 - lemmatizer developed by Martin Popel, based on morpha analyzer
- morphological generation is performed by running the morphological analyzer on an English word list and using the result as a morphological dictionary
 - (SCOWL Spell Checker Oriented Word Lists)

English POS Tagger Model

- trained on standard parts of WSJ
- released under CC BY-NC-SA licence
 - quite surprising decision caused by the fact that several European layers agreed with each other on this matter

MorphoDiTa 00000 Models ○○○● Plans 0000

NameTag 000 Models

Plans 00

English Morphological Model

- morphological analyzer is a reimplementation of
 - POS tag analyzer Morphium by Johanka
 - lemmatizer developed by Martin Popel, based on morpha analyzer
- morphological generation is performed by running the morphological analyzer on an English word list and using the result as a morphological dictionary
 - (SCOWL Spell Checker Oriented Word Lists)

English POS Tagger Model

- trained on standard parts of WSJ
- released under CC BY-NC-SA licence
 - quite surprising decision caused by the fact that several European layers agreed with each other on this matter

MorphoDiTa

Models

Plans

NameTag 000 Models

Plans

Slovak

- morphological dictionary by prof. Hajič and others
- tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
- tagger trained on PDT 2.5 translated by Česílko
- because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

Plans N

NameTag 000 Models

Plans

Slovak

- morphological dictionary by prof. Hajič and others
- tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
- tagger trained on PDT 2.5 translated by Česílko
- because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

Plans 1 •••••

NameTag M 000 0

Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

Plans 1 •••••

NameTag M 000 0

Models

Plans 00

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

Plans ●○○○ NameTag 000 Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

Plans

NameTag 000 Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only

• Arabic

- ElixirFM by O. Smrž as morphological dicionary
- Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

NameTag 000

Plans

0000

Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Plans

0000

NameTag 000 Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

Plans

0000

NameTag 000 Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

MorphoDiTa

Models

NameTag 000

Plans

0000

Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary

MorphoDiTa

Models

0000

Plans

NameTag

Models

Plans

- Slovak
 - morphological dictionary by prof. Hajič and others
 - tag set is a "translated" version of PDT
 - mapping to the tag set of SNC may be created if requested
 - tagger trained on PDT 2.5 translated by Česílko
 - because of licensing issues, currently we do not utilize Slovak National Corpus
- Swedish
 - we can use (part of) SUC corpus
 - no morphological dictionary, guesser only
- Arabic
 - ElixirFM by O. Smrž as morphological dicionary
 - Prague Arabic Dependency Treebank for POS tagger

Morpl	ho	Di	Ta
\overline{a}	0		

Plans

0000

• currently we only use guesser in Czech morphology

- we will implement (hopefully improved) training of the morphological analysis guesser in MorphoDiTa
- that would allow to create POS taggers using disambiguated data only, even for languages with rich morphology
 - create the dictionary from disambiguated data only and train the guesser to analyse words with similar prefixes/suffixes patterns
- nevertheless, such guesser cannot be used when performing morphological generation

MorphoDiTa

iodels 000 Plans ○●○○ NameTag 000 Models

Plans 00

- currently we only *use* guesser in Czech morphology
- we will implement (hopefully improved) training of the morphological analysis guesser in MorphoDiTa
- that would allow to create POS taggers using disambiguated data only, even for languages with rich morphology
 - create the dictionary from disambiguated data only and train the guesser to analyse words with similar prefixes/suffixes patterns
- nevertheless, such guesser cannot be used when performing morphological generation

MorphoDiTa

Models 0000 Plans

0000

NameTag 000 Models

Plans 00

- currently we only *use* guesser in Czech morphology
- we will implement (hopefully improved) training of the morphological analysis guesser in MorphoDiTa
- that would allow to create POS taggers using disambiguated data only, even for languages with rich morphology
 - create the dictionary from disambiguated data only and train the guesser to analyse words with similar prefixes/suffixes patterns
- nevertheless, such guesser cannot be used when performing morphological generation

MorphoDiTa

Models 0000 Plans

0000

NameTag 000 Models

Plans 00

- currently we only *use* guesser in Czech morphology
- we will implement (hopefully improved) training of the morphological analysis guesser in MorphoDiTa
- that would allow to create POS taggers using disambiguated data only, even for languages with rich morphology
 - create the dictionary from disambiguated data only and train the guesser to analyse words with similar prefixes/suffixes patterns
- nevertheless, such guesser cannot be used when performing morphological generation

MorphoDiTa

Models 0000 NameTag 000

Plans

0000

Models

Plans 00

- currently we only *use* guesser in Czech morphology
- we will implement (hopefully improved) training of the morphological analysis guesser in MorphoDiTa
- that would allow to create POS taggers using disambiguated data only, even for languages with rich morphology
 - create the dictionary from disambiguated data only and train the guesser to analyse words with similar prefixes/suffixes patterns
- nevertheless, such guesser cannot be used when performing morphological generation

MorphoDiTa

Models 0000 Plans

0000

NameTag 000 Models

Plans

• an extension to morphological analysis guesser

- create flat *form lemma tag* morphological dictionary using disambiguated data only
- can be used for both morphological analysis and morphological generation
- still a research area (ideas welcome)

More Semi-supervised Training

• make use of available large corpora

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
		0000				MorphoDiTa and NameTa

- an extension to morphological analysis guesser
- create flat *form lemma tag* morphological dictionary using disambiguated data only
- can be used for both morphological analysis and morphological generation
- still a research area (ideas welcome)

More Semi-supervised Training

• make use of available large corpora

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
00000		0000			00	MorphoDiTa and NameTag

- an extension to morphological analysis guesser
- create flat *form lemma tag* morphological dictionary using disambiguated data only
- can be used for both morphological analysis and morphological generation
- still a research area (ideas welcome)

More Semi-supervised Training

Plans

0000

• make use of available large corpora

Morpl	ho	Di	Ta
$-\overline{-}$	0		

Models 0000 NameTag 000 Models

Plans 00

- an extension to morphological analysis guesser
- create flat *form lemma tag* morphological dictionary using disambiguated data only
- can be used for both morphological analysis and morphological generation
- still a research area (ideas welcome)

More Semi-supervised Training

make use of available large corpora

MorphoDiTa	M
00000	00

odels Plans

NameTag 000 Models

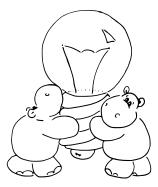
Plans 00

- an extension to morphological analysis guesser
- create flat *form lemma tag* morphological dictionary using disambiguated data only
- can be used for both morphological analysis and morphological generation
- still a research area (ideas welcome)

More Semi-supervised Training

Plans

0000


• make use of available large corpora

Morpl	hoDiTa
0000	

Aodels

NameTag 000 Models

Plans 00

Is there anything you would like in MorphoDiTa?

Morp	ohoDiTa
-000	00

Models 0000 NameTag 000

Plans

0000

Models

Plans 00

NameTag

- Named entity tagger
- named entity recognizer build upon MorphoDiTa

MorphoDiTa Models Plans **NameTag** Models Plans **Milan Straka** ০০০০০ ০০০০ ০০০০ ●০০ ০০ ০০ **MorphoDiTa and NameTag**

NameTag

- Named entity tagger
- named entity recognizer build upon MorphoDiTa

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
00000	0000	0000	000	00	00	MorphoDiTa and NameTag

- identifies and classified named entities
- both machine learning model and manual rules can be used at any point in the pipeline
- supervised machine learning model
 - neural network classifier produces BILOU class+named entity type for every word
 - Viterbi decoding of all possible BILOU assignments
 - based on (Straková et al., 2013)
- uses MorphoDiTa to obtain POS tags

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
			000		00	MorphoDiTa and NameTag

identifies and classified named entities

• both machine learning model and manual rules can be used at any point in the pipeline

supervised machine learning model

- neural network classifier produces BILOU class+named entity type for every word
- Viterbi decoding of all possible BILOU assignments
- based on (Straková et al., 2013)
- uses MorphoDiTa to obtain POS tags

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
			000		00	MorphoDiTa and NameTag

- identifies and classified named entities
- both machine learning model and manual rules can be used at any point in the pipeline
- supervised machine learning model
 - neural network classifier produces BILOU class+named entity type for every word
 - Viterbi decoding of all possible BILOU assignments
 - based on (Straková et al., 2013)
- uses MorphoDiTa to obtain POS tags

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
			000		00	MorphoDiTa and NameTag

- identifies and classified named entities
- both machine learning model and manual rules can be used at any point in the pipeline
- supervised machine learning model
 - neural network classifier produces BILOU class+named entity type for every word
 - Viterbi decoding of all possible BILOU assignments
 - based on (Straková et al., 2013)
- uses MorphoDiTa to obtain POS tags

Morpl	hoDiTa
0000	0

Models 0000 NameTag ○●0 Models

Plans 00

- identifies and classified named entities
- both machine learning model and manual rules can be used at any point in the pipeline
- supervised machine learning model
 - neural network classifier produces BILOU class+named entity type for every word
 - Viterbi decoding of all possible BILOU assignments
 - based on (Straková et al., 2013)
- uses MorphoDiTa to obtain POS tags

Mor	pho	Di	
000	00		

Models 0000 NameTag ○●0 Models

Plans 00

- identifies and classified named entities
- both machine learning model and manual rules can be used at any point in the pipeline
- supervised machine learning model
 - neural network classifier produces BILOU class+named entity type for every word
 - Viterbi decoding of all possible BILOU assignments
 - based on (Straková et al., 2013)

uses MorphoDiTa to obtain POS tags

Morpl	hoDiTa
0000	0

Models 0000 Plans

NameTag ○●0 Models

Plans 00

- identifies and classified named entities
- both machine learning model and manual rules can be used at any point in the pipeline
- supervised machine learning model
 - neural network classifier produces BILOU class+named entity type for every word
 - Viterbi decoding of all possible BILOU assignments
 - based on (Straková et al., 2013)
- uses MorphoDiTa to obtain POS tags

Morpl	hoDiT	
1000	0	

Models

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
000	20

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
000	00

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	hoDiTa
000	00

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	noDiTa
0000	0

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	noDiTa
0000	0

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

Morp	noDiTa
0000	0

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

MorphoDi	
00000	

Models

NameTag Implementation

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

MorphoDiTa 00000 Models 0000 Plans

NameTag ○O● Models

Plans 00

NameTag Implementation

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

MorphoDiTa

Models 0000 Plans

NameTag ○0● Models

Plans 00

NameTag Implementation

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN

Weblicht integration coming soon

Mor	phoDiTa
000	00

- similarly as with MorphoDiTa
- implemented in C++11
- available under LGPL licence
- library for using the models, binaries for creating them
- precompiled binaries+library for Linux/Windows/OS X
- library language bindings for
 - Java (precompiled in the package)
 - Perl (available on CPAN as a standalone package)
 - Python (available on PyPI as a standalone package)
- web service running on LINDAT/CLARIN
 - Weblicht integration coming soon

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
			000		00	MorphoDiTa and NameTag

• trained on Czech Named Entity Corpus

- embedded name entities
- two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
- \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance

Plans

- 45k words per second
- 6MB model

Morp	hoDiT	
0000		

Models 0000 NameTag 000

g

Models ●○ Plans 00

• trained on Czech Named Entity Corpus

• embedded name entities

- two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
- \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance

Plans

- 45k words per second
- 6MB model

MorphoDiTa

Models 0000 NameTag 000 Models ●○ Plans 00

• trained on Czech Named Entity Corpus

- embedded name entities
- two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
- \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance

Plans

- 45k words per second
- 6MB model

Morp	hoE	DiTa
0000		

Models 0000 NameTag 000

g Mc ●○

Models

Plans 00

• trained on Czech Named Entity Corpus

- embedded name entities
- two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
- \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance

Plans

- 45k words per second
- 6MB model

MorphoDiTa

Models 0000 NameTag 000

àg

Models ●○ Plans 00

• trained on Czech Named Entity Corpus

- embedded name entities
- two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
- \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance

Plans

- 45k words per second
- 6MB model

Morp	hoDiTa
0000	

Models 0000 NameTag 000 Models ●○ Plans 00

Czech NER Model

• trained on Czech Named Entity Corpus

- embedded name entities
- two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
- \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance
 - 45k words per second
 - 6MB model

MorphoDiTa

Models

Plans N 0000 0

NameTag 000 Models ●○ Plans 00

Czech NER Model

- trained on Czech Named Entity Corpus
 - embedded name entities
 - two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
 - \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance
 - 45k words per second
 - 6MB model

MorphoDiTa

Models

Plans

NameTag 000 Models ●○ Plans 00

Czech NER Model

- trained on Czech Named Entity Corpus
 - embedded name entities
 - two-level name entities hierarchy
 - 7 coarse classes, 46 fine-grained classes
 - \approx 35k named entities
- released under CC BY-SA-NC
- state-of-the-art results
- reasonable performance
 - 45k words per second
 - 6MB model

MorphoDiTa

Models

English NER Model

• currently trained only on CoNLL-2003 data

- four named entity classes only
- licence being discussed
 - hopefully CC BY-SA-NC

Morp	ho	Dï	
0000	\sim		

Models 0000 NameTag 000

Plans

Models ○●

s F

Plans 00

English NER Model

- currently trained only on CoNLL-2003 data
 - four named entity classes only
- licence being discussed
 - hopefully CC BY-SA-NC

MorphoDiTa	Models	Plans	NameTag	Models	Plans	
				00	00	

• train recognizer on other datasets and hierarchies

- MUC-6 and MUC-7
 - 7 named entity classes
- ACE datasets
- 3-classes hierarchy intersection of CoNLL-2003 and MUC

Additional Languages

- Arabic
 - ACE dataset
- German
 - CoNLL-2003 dataset

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
					0	MorphoDiTa and NameTag

- train recognizer on other datasets and hierarchies
 - MUC-6 and MUC-7
 - 7 named entity classes

- German
 - CoNLL-2003 dataset

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
					00	MorphoDiTa and NameTag

- train recognizer on other datasets and hierarchies
 - MUC-6 and MUC-7
 - 7 named entity classes
 - ACE datasets
 - 3-classes hierarchy intersection of CoNLL-2003 and MUC

Additional Languages

- Arabic
 - ACE dataset
- German
 - CoNLL-2003 dataset

MorphoDiTa	Models	Plans	NameTag	Ν
00000				

Aodels

Plans ●○

- train recognizer on other datasets and hierarchies
 - MUC-6 and MUC-7
 - 7 named entity classes
 - ACE datasets
 - 3-classes hierarchy intersection of CoNLL-2003 and MUC

Additional Languages

- Arabic
 - ACE dataset
- German
 - CoNLL-2003 dataset

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
					0	MorphoDiTa and NameTag

- train recognizer on other datasets and hierarchies
 - MUC-6 and MUC-7
 - 7 named entity classes
 - ACE datasets
 - 3-classes hierarchy intersection of CoNLL-2003 and MUC

Additional Languages

- Arabic
 - ACE dataset
- German
 - CoNLL-2003 dataset

MorphoDiTa	
00000	

Models 0000 Plans 0000 NameTag 000 Models

Plans ●○

- train recognizer on other datasets and hierarchies
 - MUC-6 and MUC-7
 - 7 named entity classes
 - ACE datasets
 - 3-classes hierarchy intersection of CoNLL-2003 and MUC

Additional Languages

- Arabic
 - ACE dataset
- German
 - CoNLL-2003 dataset

Morp	hoDiTa
-000	0

Models 0000

• recognize embedded named entities

• CNEC does contain embedded named entities, but NameTag tries to predict the outer ones (apart from the so-called *containers*)

More Semi-supervised Training

- make use of available large corpora
 - currently, only Brown clusters benefit from them

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
					00	MorphoDiTa and NameTag

- recognize embedded named entities
 - CNEC does contain embedded named entities, but NameTag tries to predict the outer ones (apart from the so-called *containers*)

More Semi-supervised Training

- make use of available large corpora
 - currently, only Brown clusters benefit from them

MorphoDiTa	Models	Plans	NameTag	Models	Plans	Milan Straka
					00	MorphoDiTa and NameTag

- recognize embedded named entities
 - CNEC does contain embedded named entities, but NameTag tries to predict the outer ones (apart from the so-called *containers*)

More Semi-supervised Training

- make use of available large corpora
 - currently, only Brown clusters benefit from them

MorphoDiTa

Models 0000 NameTag 0 000

ag

Models 00

Plans ○●

- recognize embedded named entities
 - CNEC does contain embedded named entities, but NameTag tries to predict the outer ones (apart from the so-called *containers*)

More Semi-supervised Training

- make use of available large corpora
 - currently, only Brown clusters benefit from them

Morpl	hoDiTa
0000	0

Models 0000 NameTag 000 Models

Plans ○●

Thanks

Questions?

MorphoDiTa

Models 0000 NameT 000 Models

Plar