GAČR EXPRO NEUREM³ Studying Representations

Ondřej Bojar

■ Sept 16, Pec pod Sněžkou

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Deep NNs for Image Classification

It's deep if it has more than one stage of non-linear feature transformation

Caveat on Evaluation (1/2)

Consider word2vec "comprehensive" test set (Mikolov et al., 2013):

- 8.8k "semantic" and 10.6k "syntactic" questions,
- w2v "accuracy is quite good" (eyeballing)
 - The authors do mention that exact-match is "only about 60%").

Kocmi and Bojar (2016) carefully examined the test set:

- "Semantic" questions cover only 3 question types:
 - country \rightarrow city, country \rightarrow currency, masculine family member \rightarrow feminine
 - Vylomova et al. (2016) test many other relations, e.g. walk-run, dog-puppy, bark-dog, cook-eat.
- "Syntactic" questions constructed by combinations:
 - starting from only 313 distinct word pairs,
 - (leading to only 35 different pairs per question on average),
 - And of the 313 pairs, 286 are formed regularly.

Caveat on Evaluation (2/2)

	Test Set by	
Accuracy on "Synt Qs"	Mikolov et al.	Kocmi et al.
word2vec as released	62.5%	43.5%
word2vec on our data	42.5%	9.7%
SubGram on our data	42.3%	22.4%

Caveat on Evaluation (2/2)

	Test Set by	
Accuracy on "Synt Qs"	Mikolov et al.	Kocmi et al.
word2vec as released	62.5%	43.5%
word2vec on our data	42.5%	9.7%
SubGram on our data	42.3%	22.4%
Nine rules	71.9%	66.4%

Caveat on Ultimate Evaluation

Kocmi and Bojar (2016):

- submitted to TSD on March 22, 2016.
- appeared in TSD in September 2016.
- ... cited by 4.

Bojanowski et al. (2017):

- submitted to arxiv on July 15, 2016.
- appeared in TACL 2017.

... cited by 1024.

Caveat on Ultimate Evaluation

Kocmi and Bojar (2016):

- submitted to TSD on March 22, 2016.
- appeared in TSD in September 2016.

... cited by 4.

• No code released, no fast code implemented at all.

Bojanowski et al. (2017):

- submitted to arxiv on July 15, 2016.
- appeared in TACL 2017.

... cited by 1024.

• This is the FastText paper.

ÚFAL People in NEUREM³

- Ondřej Bojar
- Pavel Pecina
- Jindra Helcl (non-autoregressive MT, i.a.)
- Ivana Kvapilíková (unsupervised MT)
- Michal Auersperger (document representations)
- (Jindřich Libovický) (MT with images, i.a.)
- (Petra Galuščáková) (something with video?)

Expected Outcomes of NEUREM³

- Insight into what the representations look like (for ASR and NMT).
- Tools for diagnosing:
 - Which tasks are learned implicitly with the main one.
 - Why is the network making some particular types of errors.
 - Which generalizations has the network learned and which not.
- Methods for:
 - semi-supervised and unsupervised learning.
 - pre-training, reuse of model parts, combining larger models, model interfacing,
 - successful multi-task training, all esp. in the areas of ASR and NMT.

Expected Outcomes of NEUREM³

- Insight into what the representations look like (for ASR and NMT).
- Tools for diagnosing:
 - Which tasks are learned implicitly with the main one.
 - Why is the network making some particular types of errors.
 - Which generalizations has the network learned and which not.
- Methods for:
 - semi-supervised and unsupervised learning.
 - pre-training, reuse of model parts, combining larger models, model interfacing,
 - successful multi-task training, all esp. in the areas of ASR and NMT.
- Good papers, good papers, good papers...

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. *Transactions of the Association for Computational Linguistics*, 5:135–146.

Tom Kocmi and Ondřej Bojar. 2016. SubGram: Extending Skip-gram Word Representation with Substrings. In Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel Pala, editors, *Text, Speech, and Dialogue: 19th International Conference, TSD 2016*, number 9924 in Lecture Notes in Computer Science, pages 182–189, Cham / Heidelberg / New York / Dordrecht / London. Masaryk University, Springer International Publishing.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. *CoRR*, abs/1301.3781.

Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and Timothy Baldwin. 2016. Take and took, gaggle and goose, book and read: Evaluating the utility of vector differences for lexical relation learning. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1671–1682, Berlin, Germany, August. Association for Computational Linguistics.