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Introduction

• NMT is generally modelled as sequence-to-sequence learning problem

Figure 1: Architecture of NMT system with attention

• The architecture has been successfully extended for multilingual translation and image
captioning tasks.
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Interpreting attention weights

“If you can’t explain it simply, you don’t understand it well enough.”
-Albert Einstein

• A clear interpretation of how exactly neural networks do what they do and how they do
it is often unclear.

• Using the attention mechanism as a tool for understanding model behavior has been
proposed and implemented (Mareček and Rosa (2018), Pham et al. (2019)).

• There is however a debate pertaining to the usefulness of attention weights as a
measure of interpretability.

• Some feel that attention cannot be used to understand the basis for prediction for models
(Jain and Wallace (2019), Serrano and Smith (2019)).

• Others (Vashishth et al. (2019), Vig and Belinkov (2019)) have shown that attention
weights are interpretable and are capable of capturing linguistic notions and giving
‘human-interpretable descriptions of model behavior’.
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Architecture

Figure 2: High-level network overview
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Experiment details

• All experiments were done using NeuralMonkey and using data from the Multi30k
dataset.

• The architecture is based on models successfully used for multimodal tasks (Libovický
and Helcl, 2017).

• Three kinds of experiments were done:
• Mono-encoder experiments: 1 encoder - 1 decoder
• Bi-encoder experiments: 2 encoders - 1 decoder
• Tri-encoder experiments: 3 encoders - 1 decoder

• Models with different combinations of French, Czech and Germanfor the encoder and
English for the decoder were trained.

• Analysis was done of the “forced decoding” model behavior when scoring a given
expected output.

• For the sake of analysis, a criteria where the BLEU performance of the validation set
does not improve in 300 training steps was chosen as a possible early stopping
mechanism.
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Learning curves

Figure 3: Learning curve of BLEU for
DE→EN.

Figure 4: Learning curve of BLEU for
FR→EN.

Figure 5: Learning curve of BLEU for
CZ→EN.
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Czech→English

Figure 6: Attention energy distribution for CZ→EN.
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Czech+German→English Learning curve

Figure 7: Learning curve of BLEU for
CZ+DE→EN.
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Czech+German→English attention distribution

Figure 8: Attention energy distribution
for CZ+DE→EN.
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Czech+German+French→English Learning curve

Figure 9: Learning curve of BLEU for
CZ+DE+FR→EN.
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Czech+German+French→English attention distribution

Figure 10: Attention energy distribution
for CZ+DE+FR→EN.
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Sentinel Attention Activation Ratio

• A metric in the form of sentinel attention activation ratio (SAAR) was used to
understand how much the decoder was relied upon by the model to make its final
predictions.

• For a particular sentence Si, SAAR was calculated as:

Si =
As

At

where As was the number of words whose prediction was based on the decoder during
the entire training and At represents the total count of attention units activated during
training.

• For each model, the corresponding SAAR for all sentences in the validation set was
calculated followed by calculating their correlation with sentence length.
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Sentinel Attention Activation Ratio

cz_en fr_en de_en
-0.393 0.010 -0.175

Table 1: Correlation between SAAR and sentence length of monolingual models.

cz_de_en cz_fr_en de_fr_en 3_en
-0.1145 -0.242 -0.362 -0.126

Table 2: Correlation between SAAR and sentence length of multilingual models.

The correlation values indicate that SAAR decreases with increasing sentence length.
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Future Work

• Eye-tracking study (October-November) to observe how human attention (in the form
of eye movement) behaves during translation.

• Compare computational models of attention shift for translation with human attention
patterns.

• Investigate the nature of ’representations’ learnt by multilingual models.
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Dynamics of Multilingual Translation

Summary
1. Using a setup that employs the hierarchical attention

combination mechanism can be useful for doing model analysis.
2. The model seems to pay greater importance to features from the

source language when the target sentence is shorter.
3. The model exhibits a number of flips in how it spreads its

attention throughout the training.
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