Netgraph
A Tool for Easy Searching in Prague Dependency Treebank 2.0

Jiří Mírovský
Charles University in Prague
Institute of Formal and Applied Linguistics

Prague, December 2007
On many examples from both structured layers of annotation of PDT we present a query language of Netgraph. We introduce Netgraph as a tool and present the query language (its basics, alternate values, wild cards, regular expressions, meta-attributes, references, arithmetic expressions, multiple-tree queries, access to lower layers), and show examples of usage.
Abstract (original)

On many examples from both structured layers of annotation of PDT we present a query language of Netgraph. We introduce Netgraph as a tool and present the query language (its basics, alternative values, wild cards, regular expressions, meta-attributes, references, arithmetic expressions, multiple-tree queries, access to lower layers), and show examples of usage.
Abstract

- Linguistic requirements on the query language
- Introduction to the query language
- Using the query language (examples in Netgraph)
Abstract

Linguistic requirements on the query language

Introduction to the query language

Using the query language (examples in Netgraph)
The basic unit of annotation on the tectogrammatical layer of PDT 2.0 is a sentence. The representation of the tectogrammatical annotation of a sentence is a rooted dependency tree. It consists of a set of nodes and a set of edges. Each node is a complex unit consisting of a set of pairs attribute-value. The edges express dependency relations between nodes.

The query language should be able to express node evaluation and tree dependency among nodes richly and in the most direct way.
To study valency, the query language should be able to:

- control a presence of a particular type of son (both in positive and negative meaning)
- control number of sons
Linguistic Requirements

Coordination etc.

Tree dependency is not always linguistic dependency.

- skip a node (etc. coordination, apposition)
- even better: set a linguistic dependency
Linguistic Requirements

Complex Example of Coordination

Czech: S čím mohou vlastníci i nájemci počídat, na co by se měli připravit?
English (lit.): What can owners and tenants expect, what they should get ready for?
Linguistic Requirements

Predicative Complement

Dual dependency is represented by means of a reference to another node (attributes `compl.rf` and `id`).

match a value unknown at the time of creating the query
Czech: Ze světové recese vyšly jako jednička Spojené státy.
English (lit.): The United States emerged from the world recession as number one.
Linguistic Requirements

Coreferences

Represented by means of references (attributes `coref_gram.rf` and `coref_text.rf` (and `id`))

as before, match a value unknown at the time of creating the query
Linguistic Requirements

Topic-Focus Articulation

- *Contextual boundness* – attribute tfa
- *Communicative dynamism* – deep word order (attribute deepord)

set references to other nodes with other relations than “equal to”
Linguistic Requirements

Topic-Focus Articulation

Focus proper – the rightmost contextually non-bound node in the tectogrammatical tree

define that there is no node (contextually non-bound) with bigger deepord in the whole tree

combine references, non-existence of a node and transitive closure of dependency
Linguistic Requirements

Topic-Focus Articulation

Rhematizers – closest left brother of its scope (or closest left son if the governing predicate belongs to its scope)

define distance between nodes in deep word order
Linguistic Requirements

Topic-Focus Articulation

(Non-)Projectivity – between a father and its son there can only be direct or indirect sons of the father.

define multiple-tree query to combine several one-tree queries representing different orientations of non-projective edges
Linguistic Requirements

idioms etc.

Not everything is annotated, not everything is easily accessible in the tree.

search in the linear form of the sentence
Linguistic Requirements

Layers with non-1:1 Relation

There are multiple layers of annotation, the relation among nodes on the analytical and tectogrammatical layers is not 1:1.

have special means of accessing lower layers
Linguistic Requirements

Summary

Evaluation of a node

- multiple attributes evaluation
- alternative values
- alternative nodes (alternative evaluation of the whole set of attributes)
- wild cards (regular expressions)
- negation, relations other than “equal to”
Linguistic Requirements

Summary

Dependencies between nodes
(vertical relations)

- direct, transitive (existence, non-existence)
- vertical distance (from root, from one another)
- number of sons (zero for lists)
Linguistic Requirements

Summary

Horizontal relations

- precedence, immediate precedence, distance
- negation of it

Secondary relations

- secondary dependencies, coreferences
Linguistic Requirements

Summary

Other features

- multiple-tree queries
- accessing several layers of annotation at the same time
- searching in the linear form of the sentence
Abstract

Linguistic requirements on the query language

Introduction to the query language

Using the query language (examples in Netgraph)
Introduction to the Query Language

The Basics

functor=PRED
gram/iterativeness=it1
t_lemma!="před.*"

functor=ACT

functor=ADDR|DIR3
tfa=f
functor=PAT
tfa=t

functor=RSTR
Introduction to the Query Language

Meta-Attributes

Attributes not present in the corpus, treated like normal attributes:

- `_transitive` *(transitive edge)*
- `_optional` *(optional node(s))*
- `_#sons` *(number of sons)*
- `_#hsons` *(number of hidden sons)*
- `_#descendants` *(number of nodes in the subtree)*
Introduction to the Query Language

Meta-Attributes

- `#lbrothers` (*number of left brothers*)
- `#rbrothers` (*number of right brothers*)
- `depth` (*distance from the root*)
- `#occurrences` (*exact number of a particular type of sons/descendants*)
- `name` (*label of a node for references*)
- `sentence` (*linear form of the sentence*)
Introduction to the Query Language

An Example Query

- No more than three sons
- One ACTor, one PATient, no ADDRessee
Introduction to the Query Language

References

- Predicative complement expressed by a noun
- Second dependency on a \textsc{Pat}ient
Introduction to the Query Language

Layers in PDT 2.0
Introduction to the Query Language

Hidden Nodes

A tectogrammatical node

Hidden nodes

Morphological information

Analytical information

Tectogrammatical information
• PATient expressed with preposition **k** and a Noun in 3. case on the morphological layer
Introduction to the Query Language

Hidden Nodes – A Result Tree
Abstract

- Linguistic requirements on the query language
- Introduction to the query language
- Using the query language (examples in Netgraph)
Using the Query Language

A Simple Query

- A **PREDicate** governing an **ACTor**, a **PATient**, and an **ADDRessee**
- No condition on the order of the sons or their number
Using the Query Language

A Simple Query (Result)

- Additional sons and different order of the sons
Using the Query Language

Restricting Number of Sons

- A **PREDicate** governing an **ACTor**, a **PATient**, and an **ADDRessee**
- No other sons allowed
Using the Query Language

Restricting Number of Sons (Result)

- No additional sons (though a different order)
Using the Query Language

Restricting the Type of Sons

• A PREDicate governing an ACTor and a PATient, but not an ADDRessee
Using the Query Language

Restricting the Type of Sons (Result)

• No ADDRessee dependent on the PREDicate
Using the Query Language

An Optional Node

- A `PREDicate` governing an `ACTor` with an optional `CONJunction` or `DISJunction` in between (the `ACTor` may be coordinated)
Using the Query Language

An Optional Node (Result)

- Two possible types of results: with and without the optional coordination
Using the Query Language

Predicative Complement

- A nominal predicative COMPLEMENT with second dependency on a PATient
Using the Query Language

Predicative Complement (Result)

```
   uvěst
  /    \
 PRED  \
 /     \
 důvod COMPL #PersPron ACT nesouhlas PAT
     \
      \   
       \   
        zásah PAT
         \  
          \  
           \  
            strana ACT
             \  
              \  
               Klaus APP
                \  
                 \  
                  \  
                   \  
                    vedení DIR3
                     \  
                      \  
                       \  
                        deník APP
                         \  
                          \  
                           \  
                            Telegraph ID
```
Using the Query Language

Type-1 Control Construction

- Type-1 control construction (an infinitive depends on a verbal control PREDicate)
Using the Query Language

Type-1 Control Construction (Result)
Using the Query Language

Topic-Focus (Deep Word Order)

- A **PATient** in focus on the left side (less dynamic) from an **ACTor** in topic
Czech: Začaly ale růst i houby jedovaté.

English (lit.): But also poisonous *mushrooms* started to grow.
Using the Query Language

Focus Proper

• There is not a more dynamic node in focus anywhere in the tree
Czech: Nepotrestaný zločin je stimulem pro zločiny budoucí.

English (lit.): An unpunished crime is a stimulant for future crimes.
Using the Query Language

Rhematizer with Predicate in its Scope

- A *RHEM*atizer that is the leftmost son of a **PREDicate** (no left son of the **PREDicate** is on the right side from the *RHEM*atizer)
Czech: Veřejnost si na podobné výzvy již zvykla.

English (lit.): The public has already got accustomed to such calls.
Using the Query Language

Rhematizer without Predicate in its Scope

- A rhematized **ACT**or with a **PRED**icate outside the scope of the **RHEM**atizer
Using the Query Language
Rhematizer without Predicate in its Scope (Result)

Czech: Stejný názor má i řada našich soukromých podnikatelů.

English (lit.): Also a number of our private investors has the same opinion.
• An **ACTor** less dynamic than a **PATient**, but on the right side from it on the surface
• Lower layers accessible via hidden nodes
Using the Query Language

Accessing Lower Layers (Result)

Czech: Myslím si, že udělal dobře, komentuje příchod Ronalda Ricardo.

English (lit.): I think that he did well, Ricardo says about Ronald's coming.
Using the Query Language

Effective Parentage

- A PREDicate effectively governing an ACTor (regardless of any possible combination of coordination)
Czech: Agentura se přizpůsobila rychle se měnící poptávce a organizuje i turistiku individuální.

English (lit.): The agency has adapted to a fast changing demand and organizes also an individual tourism.
References

Prague Dependency Treebank

• http://ufal.mff.cuni.cz/pdt

Netgraph home page

• http://quest.ms.mff.cuni.cz/netgraph