[ Skip to the content ]

Institute of Formal and Applied Linguistics Wiki


[ Back to the navigation ]

This is an old revision of the document!


MapReduce Tutorial : Running on cluster

Probably the most important feature of MapReduce is to run computations distributively.

So far all our MR jobs were executed locally. But all of them can be executed on multiple machines. It suffices to add parameter -c number_of_machines when running them:

perl script.pl run -c number_of_machines [-w sec_to_wait_after_job_completion] input_directory output_directory

This commands creates a cluster of specified number of machines. Every machine is able to run two mappers and two reducers simultaneously. In order to be able to observe the status of the computation after it ends, parameter -w sec_to_wait_after_job_completion can be used.

When a distributed MR computations is executed, it submits a job to SGE cluster, with the name of the Perl script. The SGE cluster creates 3 files in current directory:

When the computation ends and is waiting because of the -w parameter, removing the file script.pl.c$SGE_JOBID stops the cluster. The cluster can be also stopped by removing its SGE job.


[ Back to the navigation ] [ Back to the content ]