Both sides previous revision
Previous revision
Next revision
|
Previous revision
|
courses:mapreduce-tutorial [2012/01/25 21:10] straka |
courses:mapreduce-tutorial [2012/02/05 20:01] (current) straka |
* [[.:mapreduce-tutorial:Introduction]] | * [[.:mapreduce-tutorial:Introduction]] |
| |
| ===== Overview ===== |
| * [[.:mapreduce-tutorial:Hadoop job overview]] |
| * [[.:mapreduce-tutorial:Managing a Hadoop cluster]] |
| * [[.:mapreduce-tutorial:Running jobs]] |
| * [[.:mapreduce-tutorial:Perl API]], [[http://hadoop.apache.org/common/docs/r1.0.0/api/index.html|Java API]] |
| * [[.:mapreduce-tutorial:Making your job configurable]] |
| * [[.:mapreduce-tutorial:If things go wrong]] |
| |
===== Day 1 ===== | ===== Day 1 ===== |
* [[.:mapreduce-tutorial:Step 6]]: Running on cluster. | * [[.:mapreduce-tutorial:Step 6]]: Running on cluster. |
* [[.:mapreduce-tutorial:Step 7]]: Dynamic Hadoop cluster for several computations. | * [[.:mapreduce-tutorial:Step 7]]: Dynamic Hadoop cluster for several computations. |
| |
From now on, it is best to run MR jobs using a one-machine cluster. Running the scripts locally without any cluster has several disadvantages, most notably having only one reducer per job. | |
| |
=== MapReduce extended === | === MapReduce extended === |
| |
=== Advanced MapReduce exercises === | === Advanced MapReduce exercises === |
* [[.:mapreduce-tutorial:Step 13]]: Sorting | Exercises in this section can be made in any order, but it is recommended to try solving all of them. The [[.:mapreduce-tutorial:Perl API|Perl API reference]] may come handy. |
* [[.:mapreduce-tutorial:Step 14]]: N-gram language model | * [[.:mapreduce-tutorial:Step 13]]: Sorting. |
* [[.:mapreduce-tutorial:Step 15]]: K-means algorithm | * [[.:mapreduce-tutorial:Step 14]]: N-gram language model. |
| * [[.:mapreduce-tutorial:Step 15]]: K-means clustering. |
| |
| === Beyond MapReduce === |
| * [[.:mapreduce-tutorial:Step 16]]: Implementing iterative MapReduce jobs faster using All-Reduce. |
| |
| ===== Day 2 ===== |
| |
| Today we will be using the [[http://hadoop.apache.org/common/docs/r1.0.0/api/index.html|Java API]]. |
| |
| === Environment === |
| * [[.:mapreduce-tutorial:Step 21]]: Preparing the environment. |
| * [[.:mapreduce-tutorial:Step 22]]: Optional -- Setting Eclipse. |
| |
| === Java Hadoop basics ==== |
| * [[.:mapreduce-tutorial:Step 23]]: Predefined formats and types. |
| * [[.:mapreduce-tutorial:Step 24]]: Mappers, running Java Hadoop jobs, counters. |
| * [[.:mapreduce-tutorial:Step 25]]: Reducers, combiners and partitioners. |
| * [[.:mapreduce-tutorial:Step 26]]: Compression and job configuration. |
| * [[.:mapreduce-tutorial:Step 27]]: Running multiple Hadoop jobs in one source file. |
| |
| === Advanced topics === |
| * [[.:mapreduce-tutorial:Step 28]]: Custom data types. |
| * [[.:mapreduce-tutorial:Step 29]]: Custom sorting and grouping comparators. |
| * [[.:mapreduce-tutorial:Step 30]]: Custom input formats. |
| |
| === Beyond MapReduce === |
| * [[.:mapreduce-tutorial:Step 31]]: Implementing iterative MapReduce jobs faster using All-Reduce. |
| |
===== Other ===== | ===== Other ===== |
* [[user:majlis:hadoop|Further information]] | * [[user:majlis:hadoop|Further information]] |
| |