Differences
This shows you the differences between two versions of the page.
| Both sides previous revision
Previous revision
Next revision
|
Previous revision
|
courses:rg:2012:jodaiberreport [2012/03/26 18:43] joda |
courses:rg:2012:jodaiberreport [2012/03/26 18:51] (current) joda |
| </dd> | </dd> |
| </dl> | </dl> |
| | |
| | A PDF version of this report (with better display of formulas) can be found <a href="http://jodaiber.de/prague/rg_report.pdf">here</a>. |
| | |
| <h1 id="overview-and-notes-from-the-paper">Overview and Notes from the Paper</h1> | <h1 id="overview-and-notes-from-the-paper">Overview and Notes from the Paper</h1> |
| <h2 id="difference-between-predictive-and-two-side-class-based-model">Difference between predictive and two-side class-based model</h2> | <h2 id="difference-between-predictive-and-two-side-class-based-model">Difference between predictive and two-side class-based model</h2> |
| </ul> | </ul> |
| <h2 id="predicitive-exchange-clustering">Predicitive Exchange Clustering</h2> | <h2 id="predicitive-exchange-clustering">Predicitive Exchange Clustering</h2> |
| <p><br /><span class="math">$ | <p>(for formula see PDF version or paper)</p> |
| P({w_i}|w_1^{i - 1}) \approx {p_0}({w_i}|c({w_i})) \cdot {p_1}(c({w_i}|{w_{i - 1}})) = \frac{{N({w_i})}}{{N(c({w_i}))}} \cdot \frac{{N({w_{i - 1}},c({w_i})}}{{N({w_{i - 1}})}} | |
| $</span><br /></p> | |
| <ul style="color: black;"> | <ul style="color: black;"> |
| <li>equations (6)-(10) in the paper demonstrate the new way to calculate the perplexity: when moving a word from c to c’, last part of (10) ( <span class="math"> - ∑ <sub><em>c</em> ∈ <em>C</em></sub><em>N</em>(<em>c</em>) ⋅ log<em>N</em>(<em>c</em>)</span> ) must be recalculated, the first part ( <span class="math">∑ <sub><em>v</em> ∈ <em>V</em>, <em>c</em> ∈ <em>s</em><em>u</em><em>c</em>(<em>v</em>)</sub><em>N</em>(<em>v</em>, <em>c</em>) ⋅ log<em>N</em>(<em>v</em>, <em>c</em>)</span> ) can be quickly calculated with an additional array</li> | <li>equations (6)-(10) in the paper demonstrate the new way to calculate the perplexity: when moving a word from c to c’, last part of (10) ( <span class="math"> - ∑ <sub><em>c</em> ∈ <em>C</em></sub><em>N</em>(<em>c</em>) ⋅ log<em>N</em>(<em>c</em>)</span> ) must be recalculated, the first part ( <span class="math">∑ <sub><em>v</em> ∈ <em>V</em>, <em>c</em> ∈ <em>s</em><em>u</em><em>c</em>(<em>v</em>)</sub><em>N</em>(<em>v</em>, <em>c</em>) ⋅ log<em>N</em>(<em>v</em>, <em>c</em>)</span> ) can be quickly calculated with an additional array</li> |