Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
courses:rg:unsupervised-methods-for-head-assignments [2011/05/23 10:34] popel Section 5 -> Equation 5 + more details |
courses:rg:unsupervised-methods-for-head-assignments [2011/06/25 20:20] (current) abzianidze |
||
---|---|---|---|
Line 2: | Line 2: | ||
=== Federico Sangati and Willem Zuidema === | === Federico Sangati and Willem Zuidema === | ||
Presented by: Zdeněk Žabokrtský | Presented by: Zdeněk Žabokrtský | ||
- | Report by: Eduard Bejček | + | Report by: Eduard Bejček |
===== Introduction ===== | ===== Introduction ===== | ||
- | * The paper describes **two** methods for **unsupervised** head assignment and tests them on **two** corpora (English PennTB/ | + | * The paper describes **two** methods |
* It is the **first** successful unsupervised head assignment. | * It is the **first** successful unsupervised head assignment. | ||
+ | * The starting point of the unsupervised method is the observation that a head-annotated treebank (obeying the constraint that every nonterminal node has exactly one head daughter) defines a unique single-anchored Lexicalized Tree Substitution Grammar (LTSG) - a LTFG where every elementary tree has exactly one lexical anchor. | ||
+ | * Baselines: **four baselines** are used for the head assignments on the training data: | ||
+ | * **Magerman-Collins scheme** - based on a number of heuristic rules that only use the labels of nonterminal nodes and the ordering of daughter nodes (not general as it depends on POS tag names); | ||
+ | * **Random** - randomly marking one of the nonterminal daughters of every node as head; | ||
+ | * **Left** - the left most daughter is always marked as head; | ||
+ | * **Right** - the right most daughter is always marked as head; | ||
+ | * **Entropy Minimization** is a greedy algorithm which aims to learn the simplest LTFG fitting the data in terms of reducing the uncertainty in assigning an elementary tree to a given lexical item. | ||
+ | * **Familiarity Maximization** is also a greedy algorithm which aims to assign heads to a tree //t// in such a way that the elementary trees in the complete derivation of the tree //t// are " | ||
* There is a problem when converting dependency structures into head annotations: | * There is a problem when converting dependency structures into head annotations: | ||
- | + | ||
===== What do we dislike about the paper ===== | ===== What do we dislike about the paper ===== | ||
* Equation 5 is misleading/ | * Equation 5 is misleading/ | ||
- | * We found three possible interpretations of "// | + | * We found three possible interpretations of "// |
- apply one fixed annotation of the heads (but it can be any annotation) | - apply one fixed annotation of the heads (but it can be any annotation) | ||
- apply the (partial) annotation which is consistent with all possible head annotations | - apply the (partial) annotation which is consistent with all possible head annotations | ||
- apply all possible head annotations | - apply all possible head annotations | ||
+ | |||
+ | > this is the case as a) this is the point of greedy technique to be theoretically able to result any possible head annotations and b) only in this case there is threat (mentioned in article) of having exponential number of elementary trees for a sentence of length < | ||
+ | |||
* It is also unclear, what " | * It is also unclear, what " | ||
+ | |||
+ | > While extracting the elementary trees from a head annotated sentence we are first extracting //spines// and than they yield elementary trees (note that in this process elementary trees and //spines// are in one-to-one correspondence). Hence the authors means these //spines// in // | ||
+ | |||
* The **greediness** of the entropy model could be its main weakness resulting in not so good numbers. | * The **greediness** of the entropy model could be its main weakness resulting in not so good numbers. | ||
===== What do we like about the paper ===== | ===== What do we like about the paper ===== | ||
* Things mentioned in the Introduction. | * Things mentioned in the Introduction. | ||
+ | * Contributes to the popular problem - transformation of constituency treebanks into dependency structures. | ||
* The correspondence between **rule** based head-assignment (by Magerman-Collins) and depencencies (in PARC 700 Depencency Bank) is **surprisingly low**: 85%. | * The correspondence between **rule** based head-assignment (by Magerman-Collins) and depencencies (in PARC 700 Depencency Bank) is **surprisingly low**: 85%. |
[ Back to the navigation ] [ Back to the content ]