[ Skip to the content ]

Institute of Formal and Applied Linguistics Wiki


[ Back to the navigation ]

This is an old revision of the document!


Table of Contents

GPU at ÚFAL

This page summarizes which UFAL servers have some GPU card, and suggests basic diagnostic commands, paths to installed tools, etc., simply everything necessary at the very beginning of using GPUs for experiments.

Servers with GPU units

machine GPU; Capability [cc] cores GPU RAM Cuda Theano TensorFlow Comment
titan-gpu GeForce GTX Titan Z; cc3.5 2 6 GB each core V7.5.17 ? works
twister1 …has burnt
twister2 GeForce GTX 570; cc2.0 1 1 GB V7.5.17 ? no, needs cc3.0+
kronos-dev Tesla K40c; cc3.5? 1 12 GB V6.5.12 0.6.0 ?
kronos-dev Quadro K2000; cc3.0 1 2 GB as above as above ?

Milan Fucik says that Troja servers can accommodate only Quadro K1200 4GB. We should probably test Quadro K2000 there before buying any of those.

Installed toolkits

This should mention where each interesting toolkit lives (on a particular machine).

TensorFlow

This script installs TensorFlow 0.7.1 (and all other dependencies we need for Multimodal Translation) into `tf' and `tf-gpu' virtual environments. The GPU environment can be loaded by calling

source tf-gpu/bin/activate-gpu

.

Select GPU device

Use variable CUDA_VISIBLE_DEVICES to constrain tensorflow to compute only on the selected one.

Basic commands

lspci
  # is any such hardware there?
nvidia-smi
  # more details, incl. running processes on the GPU
  # nvidia-* are typically located in /usr/bin
watch nvidia-smi
  # For monitoring GPU activity in a separate terminal (thanks to Jindrich Libovicky for this!)
nvcc --version
  # this should tell CUDA version
  # nvcc is typically installed in /usr/local/cuda/bin/
theano-test
  # dela to vubec neco uzitecneho? :-)
  # theano-* are typically located in /usr/local/bin/

GPU specs for those GPUs we have:


[ Back to the navigation ] [ Back to the content ]