[ Skip to the content ]

Institute of Formal and Applied Linguistics Wiki


[ Back to the navigation ]

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
slurm [2022/09/08 12:48]
vodrazka [Interactive mode]
slurm [2024/10/02 15:22] (current)
popel
Line 1: Line 1:
 ====== ÚFAL Grid Engine (LRC) ====== ====== ÚFAL Grid Engine (LRC) ======
  
-LRC (Linguistic Research Cluster) is a name of ÚFAL's computational grid/cluster.+**IN 2024: Newly, all the documentation is at dedicated wiki https://ufal.mff.cuni.cz/lrc (you need to use ufal and [[internal:welcome-at-ufal#small-linguistic-password|small-linguistic password]] to access the wiki from outside of the UFAL network).***
  
 +LRC (Linguistic Research Cluster) is the name of ÚFAL's computational grid/cluster. The cluster is built on top of [[https://slurm.schedmd.com/|SLURM]] and is using [[https://www.lustre.org/|Lustre]] for [[internal:linux-network#directory-structure|data storage]].
 +
 +See Milan Straka's intro to Slurm (and Spark and possibly also the [[https://ufal.mff.cuni.cz/courses/npfl118#assignments|NPFL118 assingments]] if you want). Use the username=ufal and small linguistic password:
 +
 +  * https://lectures.ms.mff.cuni.cz/video/rec/npfl118/2324/npfl118-2324-winter-slurm.mp4
 +  * https://lectures.ms.mff.cuni.cz/video/rec/npfl118/2324/npfl118-2324-winter-spark.mp4
 +  * https://lectures.ms.mff.cuni.cz/video/rec/npfl118/2324/npfl118-2324-winter-assignments.mp4
 +
 +Currently there are following partitions (queues) available for computing:
 +
 +===== Node list by partitions =====
 +
 +The naming convention is straightforward for CPU nodes - nodes in each group are numbered. For GPU nodes the format is: [t]dll-**X**gpu**N** where **X** gives total number of GPUs equipped and **N** is just enumerating the order of the node with the given configuration.
 +The prefix **t** is for nodes at Troja and **dll** stands for Deep Learning Laboratory. 
 +==== cpu-troja ====
 +
 +| Node name | Thread count | Socket:Core:Thread | RAM (MB) |
 +| achilles[1-8] | 32 | 2:8:2 | 128810 |
 +| hector[1-8] | 32 | 2:8:2 | 128810 |
 +| helena[1-8] | 32 | 2:8:2 | 128811 |
 +| paris[1-8] | 32 | 2:8:2 | 128810 |
 +| hyperion[2-8] | 64 | 2:16:2 | 257667 |
 +==== cpu-ms ====
 +
 +| Node name | Thread count | Socket:Core:Thread | RAM (MB) |
 +| iridium | 16 | 2:4:2 | 515977 |
 +| orion[1-8] | 40 | 2:10:2 | 128799 |
 +==== gpu-troja ====
 +
 +| Node name | Thread count | Socket:Core:Thread | RAM (MB) | Features | GPU type |
 +| tdll-3gpu[1-4] | 64 | 2:16:2 | 128642 | gpuram48G gpu_cc8.6 | NVIDIA A40 |
 +| tdll-8gpu[1,2] | 64 | 2:16:2 | 257666 | gpuram40G gpu_cc8.0 | NVIDIA A100 |
 +| tdll-8gpu[3-7] | 32 | 2:8:2 | 253725 | gpuram16G gpu_cc7.5 | NVIDIA Quadro P5000 |
 +==== gpu-ms ====
 +
 +| Node name | Thread count | Socket:Core:Thread | RAM (MB) | Features | GPU type |
 +| dll-3gpu[1-5] | 64 | 2:16:2 | 128642 | gpuram48G gpu_cc8.6 | NVIDIA A40 |
 +| dll-4gpu[1,2] | 40 | 2:10:2 | 187978 | gpuram24G gpu_cc8.6 | NVIDIA RTX 3090 |
 +| dll-4gpu3 | 62 | 1:32:2 | 515652 | gpuram48G gpu_cc8.9 | NVIDIA L40 |
 +| dll-4gpu4 | 30 | 1:16:2 | 257616 | gpuram48G gpu_cc8.6 | NVIDIA A40 |
 +| dll-8gpu[1,2] | 64 | 2:16:2 | 515838 | gpuram24G gpu_cc8.0 | NVIDIA A30 |
 +| dll-8gpu[3,4] | 32 | 2:8:2 | 257830 | gpuram16G gpu_cc8.6 | NVIDIA RTX A4000 |
 +| dll-8gpu[5,6] | 40 | 2:10:2 | 385595 | gpuram16G gpu_cc7.5 | NVIDIA Quadro RTX 5000 |
 +| dll-10gpu1 | 32 | 2:8:2 | 257830 | gpuram16G gpu_cc8.6 | NVIDIA RTX A4000 |
 +| dll-10gpu[2,3] | 32 | 2:8:2 | 257830 | gpuram11G gpu_cc6.1 | NVIDIA GeForce GTX 1080 Ti |
 +
 +
 +==== Submit nodes ====
 +
 +
 +In order to submit a job you need to login to one of the head nodes:
 +
 +   lrc1.ufal.hide.ms.mff.cuni.cz
 +   lrc2.ufal.hide.ms.mff.cuni.cz
 +   sol1.ufal.hide.ms.mff.cuni.cz
 +   sol2.ufal.hide.ms.mff.cuni.cz
 +   sol3.ufal.hide.ms.mff.cuni.cz
 +   sol4.ufal.hide.ms.mff.cuni.cz
 ===== Basic usage ===== ===== Basic usage =====
  
Line 17: Line 75:
 #!/bin/bash #!/bin/bash
 #SBATCH -J helloWorld   # name of job #SBATCH -J helloWorld   # name of job
-#SBATCH -p cpu-troja   # name of partition or queue+#SBATCH -p cpu-troja   # name of partition or queue (default=cpu-troja)
 #SBATCH -o helloWorld.out   # name of output file for this submission script #SBATCH -o helloWorld.out   # name of output file for this submission script
 #SBATCH -e helloWorld.err   # name of error file for this submission script #SBATCH -e helloWorld.err   # name of error file for this submission script
Line 32: Line 90:
 #SBATCH -D /some/path/                        # change directory before executing the job    #SBATCH -D /some/path/                        # change directory before executing the job   
 #SBATCH -N 2                                  # number of nodes (default 1) #SBATCH -N 2                                  # number of nodes (default 1)
-#SBATCH --nodelist=node1,node2...             # required node, or comma separated list of required nodes +#SBATCH --nodelist=node1,node2...             # execute on *all* the specified nodes (and possibly more) 
-#SBATCH -                                 # number of cores/threads per task (default 1)+#SBATCH --cpus-per-task=                    # number of cores/threads per task (default 1)
 #SBATCH --gres=gpu:                         # number of GPUs to request (default 0) #SBATCH --gres=gpu:                         # number of GPUs to request (default 0)
 #SBATCH --mem=10G                             # request 10 gigabytes memory (per node, default depends on node) #SBATCH --mem=10G                             # request 10 gigabytes memory (per node, default depends on node)
Line 53: Line 111:
 </code> </code>
  
-==== Running jobs ====+=== Rudolf's template === 
 + 
 +The main point is for log files to have the job name and job id in them automatically. 
 + 
 +<code> 
 +#SBATCH -J RuRjob 
 +#SBATCH -o %x.%j.out 
 +#SBATCH -e %x.%j.err 
 +#SBATCH -p gpu-troja 
 +#SBATCH --gres=gpu:
 +#SBATCH --mem=16G 
 +#SBATCH --constraint="gpuram16G|gpuram24G" 
 + 
 +# Print each command to STDERR before executing (expanded), prefixed by "+ " 
 +set -o xtrace 
 +</code> 
 + 
 +==== Inspecting jobs ====
  
 In order to inspect all running jobs on the cluster use: In order to inspect all running jobs on the cluster use:
Line 59: Line 134:
 <code> <code>
 squeue squeue
 +</code>
 +
 +filter only my jobs
 +
 +<code>
 +squeue --me
 </code> </code>
  
Line 90: Line 171:
 <code> <code>
 sinfo sinfo
 +</code>
 +
 +List detailed info about nodes:
 +<code>
 +sinfo -l -N
 </code>  </code> 
  
-List types of available GPUs:+List nodes with some custom format info:
 <code> <code>
-sinfo -o %G+sinfo -N -o "%N %P %.11T %.15f"
 </code> </code>
  
 +=== CPU core allocation ===
 +
 +The minimal computing resource in SLURM is one CPU core. However, CPU count advertised by SLURM corresponds to the number of CPU threads.
 +If you ask for 1 CPU core with <code>--cpus-per-task=1</code> SLURM will allocate all threads of 1 CPU core.
 +
 +For example ''dll-8gpu1'' will allocate 2 threads since its ThreadsPerCore=2:
 +
 +<code>
 +$> scontrol show node dll-8gpu1
 +$ scontrol show node dll-8gpu1
 +NodeName=dll-8gpu1 Arch=x86_64 CoresPerSocket=16 
 +   CPUAlloc=0 CPUTot=64 CPULoad=0.05                                               // CPUAlloc - allocated threads, CPUTot - total threads
 +   AvailableFeatures=gpuram24G
 +   ActiveFeatures=gpuram24G
 +   Gres=gpu:nvidia_a30:8(S:0-1)
 +   NodeAddr=10.10.24.63 NodeHostName=dll-8gpu1 Version=21.08.8-2
 +   OS=Linux 5.15.35-1-pve #1 SMP PVE 5.15.35-3 (Wed, 11 May 2022 07:57:51 +0200) 
 +   RealMemory=515838 AllocMem=0 FreeMem=507650 Sockets=2 Boards=1
 +   CoreSpecCount=1 CPUSpecList=62-63                                               // CoreSpecCount - cores reserved for OS, CPUSpecList - list of threads reserved for system
 +   State=IDLE ThreadsPerCore=2 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/         // ThreadsPerCore - count of threads for 1 CPU core
 +   Partitions=gpu-ms 
 +   BootTime=2022-09-01T14:07:50 SlurmdStartTime=2022-09-02T13:54:05
 +   LastBusyTime=2022-10-02T20:17:09
 +   CfgTRES=cpu=64,mem=515838M,billing=64
 +   AllocTRES=
 +   CapWatts=n/a
 +   CurrentWatts=0 AveWatts=0
 +   ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s
 +</code>
  
 +In the example above you can see comments at all lines relevant to CPU allocation.
  
 +=== Priority ====
  
 +When running srun or sbatch, you can pass ''-q high/normal/low/preempt-low''. These represent priorities 300/200/100/100, with ''normal'' (200) being the default. Furthermore, the ''preempt-low'' QOS is actually preemptible -- if there is a job with normal or high QOS, they can interrupt your ''preempt-low'' job.
  
 +The preemption has probably not been used by anyone yet; some documentation about it is on https://slurm.schedmd.com/preempt.html, we use the REQUEUE regime (so your job is killed, very likely with some signal, so you could monitor it and for example save a checkpoint; but currently I do not know any details), and then started again when there are resources.
  
 ==== Interactive mode ==== ==== Interactive mode ====
Line 111: Line 230:
 There are many more parameters available to use. For example: There are many more parameters available to use. For example:
  
-<code>srun -p cpu-troja --mem=64G --pty bash</code>+**To get an interactive CPU job with 64GB of reserved memory:** 
 +<code>srun -p cpu-troja,cpu-ms --mem=64G --pty bash</code>
  
-  * ''-p cpu-troja'' explicitly requires partition ''cpu-troja'' +  * ''-p cpu-troja'' explicitly requires partition ''cpu-troja''. If not specified slurm will use default partition. 
-  * ''--mem=64G'' requires 64G of memory for the job+  * ''-''''-mem=64G'' requires 64G of memory for the job
  
-<code>srun -p gpu-troja --nodelist=tdll-3gpu1 --mem=64G --gres=gpu:2 --pty bash</code>+**To get interactive job with a single GPU of any kind:** 
 +<code>srun -p gpu-troja,gpu-ms --gres=gpu:1 --pty bash</code> 
 +  * ''-p gpu-troja,gpu-ms'' require only nodes from these two partitions 
 +  * ''-''''-gres=gpu:1'' requires 1 GPUs 
 + 
 +<code>srun -p gpu-troja,gpu-ms --nodelist=tdll-3gpu1 --mem=64G --gres=gpu:2 --pty bash</code> 
 +  * ''-p gpu-troja,gpu-ms'' require only nodes from these two partitions 
 +  * ''-''''-nodelist=tdll-3gpu1'' explicitly requires one specific node 
 +  * Note that e.g. ''-''''-nodelist=tdll-3gpu[1-4]'' would execute 4 jobs on **all** the four machines ''tdll-3gpu[1-4]''. The documentation says "The job will contain all of these hosts and possibly additional hosts as needed to satisfy resource requirements." I am not aware of any [[https://stackoverflow.com/a/37555321/3310232|simple way]] how to specify that **any** of the listed nodes can be used, i.e. an equivalent of SGE ''-q '*@hector[14]'''
 +  * ''-''''-gres=gpu:2'' requires 2 GPUs 
 + 
 +<code>srun -p gpu-troja --constraint="gpuram48G|gpuram40G" --mem=64G --gres=gpu:2 --pty bash</code> 
 +  * ''-''''-constraint="gpuram48G|gpuram40G"'' only consider nodes that have either ''gpuram48G'' or ''gpuram40G'' feature defined 
 + 
 + 
 +\\ 
 +**Unexpected Behavior of ''srun -c1''** 
 +When you execute a command using ''srun'' and pass ''-c1'' like 
 +<code>srun -c1 date</code> 
 +then the command is actually executed **twice in parallel**. To avoid it, you have to either **remove the ''-c1''** or also **add explicit ''-n1''.** 
 +==== Delete Job ==== 
 +<code>scancel <job_id> </code> 
 + 
 +<code>scancel -n <job_name> </code>
  
-  * ''--nodelist=tdll-3gpu1'' explicitly requires one specific node 
-  * ''--gres=gpu:2'' requires 2 GPUs 
  
 To see all the available options type: To see all the available options type:
  
-<code>man srun</code>+<code>man scancel</code> 
 + 
 +==== Basic commands on cluster machines ==== 
 + 
 +  lspci 
 +    # is any such hardware there? 
 +  nvidia-smi 
 +    # more details, incl. running processes on the GPU 
 +    # nvidia-* are typically located in /usr/bin 
 +  watch nvidia-smi 
 +    # For monitoring GPU activity in a separate terminal (thanks to Jindrich Libovicky for this!) 
 +    # You can also use nvidia-smi -l TIME 
 +  nvcc --version 
 +    # this should tell CUDA version 
 +    # nvcc is typically installed in /usr/local/cuda/bin/ 
 +  theano-test 
 +    # dela to vubec neco uzitecneho? :-) 
 +    # theano-* are typically located in /usr/local/bin/ 
 +  /usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery 
 +    # shows CUDA capability etc. 
 +  ssh dll1; ~popel/bin/gpu_allocations 
 +    # who occupies which card on a given machine 
 +     
 + 
 + 
 +===== See also ===== 
 + 
 +https://www.msi.umn.edu/slurm/pbs-conversion 
  

[ Back to the navigation ] [ Back to the content ]