[ Skip to the content ]

Institute of Formal and Applied Linguistics Wiki


[ Back to the navigation ]

This is an old revision of the document!


Table of Contents

ÚFAL Grid Engine (LRC)

LRC (Linguistic Research Cluster) is the name of ÚFAL's computational grid/cluster. The cluster is built on top of SLURM and is using Lustre for data storage.

Currently there are following partitions (queues) available for computing:

Node list by partitions

The naming convention is straightforward for CPU nodes - nodes in each group are numbered. For GPU nodes the format is: [t]dll-XgpuN where X gives total number of GPUs equipped and N is just enumerating the order of the node with the given configuration.
The prefix t is for nodes at Troja and dll stands for Deep Learning Laboratory.

cpu-troja

Node name Thread count Socket:Core:Thread RAM (MB)
achilles[1-8] 32 2:8:2 128810
hector[1-8] 32 2:8:2 128810
helena[1-8] 32 2:8:2 128811
paris[1-8] 32 2:8:2 128810
hyperion[2-8] 64 2:16:2 257667

cpu-ms

Node name Thread count Socket:Core:Thread RAM (MB)
iridium 16 2:4:2 515977
orion[1-8] 40 2:10:2 128799

gpu-troja

Node name Thread count Socket:Core:Thread RAM (MB) Features GPU type
tdll-3gpu1 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
tdll-3gpu2 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
tdll-3gpu3 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
tdll-3gpu4 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
tdll-8gpu1 64 2:16:2 257666 gpuram40G gpu_cc8.0 NVIDIA A100
tdll-8gpu2 64 2:16:2 257666 gpuram40G gpu_cc8.0 NVIDIA A100
tdll-8gpu3 32 2:8:2 253725 gpuram16G gpu_cc7.5 NVIDIA Quadro P5000
tdll-8gpu4 32 2:8:2 253725 gpuram16G gpu_cc7.5 NVIDIA Quadro P5000
tdll-8gpu5 32 2:8:2 253725 gpuram16G gpu_cc7.5 NVIDIA Quadro P5000
tdll-8gpu6 32 2:8:2 253725 gpuram16G gpu_cc7.5 NVIDIA Quadro P5000
tdll-8gpu7 32 2:8:2 253725 gpuram16G gpu_cc7.5 NVIDIA Quadro P5000

gpu-ms

Node name Thread count Socket:Core:Thread RAM (MB) Features GPU type
dll-3gpu1 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
dll-3gpu2 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
dll-3gpu3 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
dll-3gpu4 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
dll-3gpu5 64 2:16:2 128642 gpuram48G gpu_cc8.6 NVIDIA A40
dll-4gpu1 40 2:10:2 187978 gpuram24G gpu_cc8.6 NVIDIA RTX 3090
dll-4gpu2 40 2:10:2 187978 gpuram24G gpu_cc8.6 NVIDIA RTX 3090
dll-8gpu1 64 2:16:2 515838 gpuram24G gpu_cc8.0 NVIDIA A30
dll-8gpu2 64 2:16:2 515838 gpuram24G gpu_cc8.0 NVIDIA A30
dll-8gpu3 32 2:8:2 257830 gpuram16G gpu_cc8.6 NVIDIA RTX A4000
dll-8gpu4 32 2:8:2 253721 gpuram16G gpu_cc8.6 NVIDIA RTX A4000
dll-8gpu5 40 2:10:2 385595 gpuram16G gpu_cc7.5 NVIDIA Quadro RTX 5000
dll-8gpu6 40 2:10:2 385595 gpuram16G gpu_cc7.5 NVIDIA Quadro RTX 5000
dll-10gpu1 32 2:8:2 257830 gpuram16G gpu_cc8.6 NVIDIA RTX A4000
dll-10gpu2 32 2:8:2 257830 gpuram11G gpu_cc6.1 NVIDIA GeForce GTX 1080 Ti
dll-10gpu3 32 2:8:2 257830 gpuram11G gpu_cc6.1 NVIDIA GeForce GTX 1080 Ti

Submit nodes

In order to submit a job you need to login to one of the head nodes:

 lrc1.ufal.hide.ms.mff.cuni.cz
 lrc2.ufal.hide.ms.mff.cuni.cz
 sol1.ufal.hide.ms.mff.cuni.cz
 sol2.ufal.hide.ms.mff.cuni.cz
 sol3.ufal.hide.ms.mff.cuni.cz
 sol4.ufal.hide.ms.mff.cuni.cz

Basic usage

Batch mode

The core idea is that you write a batch script containing the commands you wish to run as well as a list of SBATCH directives specifying the resources or parameters that you need for your job.
Then the script is submitted to the cluster with:

sbatch myJobScript.sh

Here is a simple working example:

#!/bin/bash
#SBATCH -J helloWorld					  # name of job
#SBATCH -p cpu-troja					  # name of partition or queue (default=cpu-troja)
#SBATCH -o helloWorld.out				  # name of output file for this submission script
#SBATCH -e helloWorld.err				  # name of error file for this submission script

# run my job (some executable)
sleep 5
echo "Hello I am running on cluster!"

After submitting this simple code you should end up with the two files (helloWorld.out and helloWorld.err) in the directory where you called the sbatch command.

Here is the list of other useful SBATCH directives:

#SBATCH -D /some/path/                        # change directory before executing the job   
#SBATCH -N 2                                  # number of nodes (default 1)
#SBATCH --nodelist=node1,node2...             # execute on *all* the specified nodes (and possibly more)
#SBATCH --cpus-per-task=4                     # number of cores/threads per task (default 1)
#SBATCH --gres=gpu:1                          # number of GPUs to request (default 0)
#SBATCH --mem=10G                             # request 10 gigabytes memory (per node, default depends on node)

If you need you can have slurm report to you:

#SBATCH --mail-type=begin        # send email when job begins
#SBATCH --mail-type=end          # send email when job ends
#SBATCH --mail-type=fail         # send email if job fails
#SBATCH --mail-user=<YourUFALEmailAccount>

As usuall the complete set of options can be found by typing:

man sbatch

Running jobs

In order to inspect all running jobs on the cluster use:

squeue

filter only jobs of user linguist:

squeue -u linguist

filter only jobs on partition gpu-ms:

squeue -p gpu-ms

filter jobs in specific state (see man squeue for list of valid job states):

squeue -t RUNNING

filter jobs running on a specific node:

squeue -w dll-3gpu1

Cluster info

The command sinfo can give you useful information about nodes available in the cluster. Here is a short list of some examples:

List available partitions(queues). The default partition is marked with *:

sinfo

List detailed info about nodes:

sinfo -l -N

List nodes with some custom format info:

sinfo -N -o "%N %P %.11T %.15f"

CPU core allocation

The minimal computing resource in SLURM is one CPU core. However, CPU count advertised by SLURM corresponds to the number of CPU threads.
If you ask for 1 CPU core with

--cpus-per-task=1

SLURM will allocate all threads of 1 CPU core.

For example dll-8gpu1 will allocate 2 threads since its ThreadsPerCore=2:

$> scontrol show node dll-8gpu1
$ scontrol show node dll-8gpu1
NodeName=dll-8gpu1 Arch=x86_64 CoresPerSocket=16 
   CPUAlloc=0 CPUTot=64 CPULoad=0.05                                               // CPUAlloc - allocated threads, CPUTot - total threads
   AvailableFeatures=gpuram24G
   ActiveFeatures=gpuram24G
   Gres=gpu:nvidia_a30:8(S:0-1)
   NodeAddr=10.10.24.63 NodeHostName=dll-8gpu1 Version=21.08.8-2
   OS=Linux 5.15.35-1-pve #1 SMP PVE 5.15.35-3 (Wed, 11 May 2022 07:57:51 +0200) 
   RealMemory=515838 AllocMem=0 FreeMem=507650 Sockets=2 Boards=1
   CoreSpecCount=1 CPUSpecList=62-63                                               // CoreSpecCount - cores reserved for OS, CPUSpecList - list of threads reserved for system
   State=IDLE ThreadsPerCore=2 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A          // ThreadsPerCore - count of threads for 1 CPU core
   Partitions=gpu-ms 
   BootTime=2022-09-01T14:07:50 SlurmdStartTime=2022-09-02T13:54:05
   LastBusyTime=2022-10-02T20:17:09
   CfgTRES=cpu=64,mem=515838M,billing=64
   AllocTRES=
   CapWatts=n/a
   CurrentWatts=0 AveWatts=0
   ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

In the example above you can see comments at all lines relevant to CPU allocation.

Interactive mode

This mode can be useful for testing You should be using batch mode for any serious computation.
You can use srun command to get an interactive shell on an arbitrary node from the default partition (queue):

srun --pty bash

There are many more parameters available to use. For example:

To get an interactive CPU job with 64GB of reserved memory:

srun -p cpu-troja,cpu-ms --mem=64G --pty bash

To get interactive job with a single GPU of any kind:

srun -p gpu-troja,gpu-ms --gres=gpu:1 --pty bash
srun -p gpu-troja,gpu-ms --nodelist=tdll-3gpu1 --mem=64G --gres=gpu:2 --pty bash
srun -p gpu-troja --constraint="gpuram48G|gpuram40G" --mem=64G --gres=gpu:2 --pty bash

Delete Job

scancel <job_id> 

To see all the available options type:

man srun

See also

https://www.msi.umn.edu/slurm/pbs-conversion


[ Back to the navigation ] [ Back to the content ]