Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
spark:recipes:using-perl-via-pipes [2014/11/07 10:38] straka |
spark:recipes:using-perl-via-pipes [2024/09/27 09:25] (current) straka [Complete Example using Simple Perl Tokenizer and Scala] |
||
---|---|---|---|
Line 6: | Line 6: | ||
Still, this functionality is useful when libraries available only in Perl have to be used. | Still, this functionality is useful when libraries available only in Perl have to be used. | ||
- | Here we show how data can be passed from Python to Perl and back using JSON format, which allows preserving data types -- '' | + | Here we show how data can be passed from Python/ |
+ | - It allows serializing numbers, strings and arrays. | ||
+ | - The serialized JSON string contains no newlines, which fits the line-oriented Spark piping. | ||
+ | - Libraries for JSON serialization/ | ||
===== Using Python and JSON ===== | ===== Using Python and JSON ===== | ||
- | Using JSON format, we can easily serialize | + | We start with the Perl script, which reads JSON from stdin lines, decodes them, process them and optinally produces output: |
- | - It allows serializing numbers, strings and arrays. | + | <file perl> |
- | | + | # |
- | - Libraries for JSON serialization/ | + | use warnings; |
+ | use strict; | ||
+ | |||
+ | use JSON; | ||
+ | my $json = JSON-> | ||
+ | |||
+ | while (<>) { | ||
+ | my $data = $json-> | ||
+ | |||
+ | # process | ||
+ | |||
+ | # for every $output, which can be string, int or an array ref: | ||
+ | # print $json-> | ||
+ | } | ||
+ | </ | ||
+ | |||
+ | On the Python side, the Perl script is used in the following way: | ||
+ | <file python> | ||
+ | import json | ||
+ | import os | ||
+ | |||
+ | ... | ||
+ | |||
+ | # let rdd be an RDD we want to process | ||
+ | rdd.map(json.dumps).pipe(" | ||
+ | </ | ||
+ | |||
+ | ==== Complete Example using Simple Perl Tokenizer and Python | ||
+ | |||
+ | Suppose we want to write program which uses Perl Tokenizer | ||
+ | |||
+ | File '' | ||
+ | <file perl> | ||
+ | # | ||
+ | use warnings; | ||
+ | use strict; | ||
+ | |||
+ | use JSON; | ||
+ | my $json = JSON-> | ||
+ | |||
+ | while (<>) { | ||
+ | | ||
+ | |||
+ | foreach my $sentence (split(/ | ||
+ | my @tokens = split(/ | ||
+ | |||
+ | print $json-> | ||
+ | | ||
+ | } | ||
+ | </ | ||
+ | |||
+ | File '' | ||
+ | <file python> | ||
+ | # | ||
+ | |||
+ | import sys | ||
+ | if len(sys.argv) < 3: | ||
+ | print >> | ||
+ | exit(1) | ||
+ | input = sys.argv[1] | ||
+ | output = sys.argv[2] | ||
+ | |||
+ | import json | ||
+ | import os | ||
+ | from pyspark import SparkContext | ||
+ | |||
+ | sc = SparkContext() | ||
+ | (sc.textFile(input) | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | sc.stop() | ||
+ | </ | ||
+ | |||
+ | It can be executed using | ||
+ | | ||
+ | Note that the Perl script has to be added to the list of files used by the job. | ||
+ | |||
+ | ===== Using Scala and JSON ===== | ||
+ | |||
+ | The Perl side is the same as in [[# | ||
+ | |||
+ | The Scala side is a bit more complicated that the Python, because in Scala the '' | ||
+ | <file scala> | ||
+ | def encodeJson[T <: AnyRef](src: | ||
+ | implicit val formats = org.json4s.jackson.Serialization.formats(org.json4s.NoTypeHints) | ||
+ | return org.json4s.jackson.Serialization.write[T](src) | ||
+ | } | ||
+ | |||
+ | def decodeJson[T: | ||
+ | implicit val formats = org.json4s.jackson.Serialization.formats(org.json4s.NoTypeHints) | ||
+ | return org.json4s.jackson.Serialization.read[T](src) | ||
+ | } | ||
+ | |||
+ | ... | ||
+ | |||
+ | // let rdd be an RDD we want to process, creating '' | ||
+ | rdd.map(encodeJson).pipe(" | ||
+ | </ | ||
+ | |||
+ | ==== Complete Example using Simple Perl Tokenizer and Scala ==== | ||
+ | |||
+ | We now implement the [[# | ||
+ | |||
+ | The Scala file '' | ||
+ | <file scala> | ||
+ | import org.apache.spark.SparkContext | ||
+ | import org.apache.spark.SparkContext._ | ||
+ | |||
+ | object Main { | ||
+ | def encodeJson[T <: AnyRef](src: | ||
+ | implicit val formats = org.json4s.jackson.Serialization.formats(org.json4s.NoTypeHints) | ||
+ | return org.json4s.jackson.Serialization.write[T](src) | ||
+ | } | ||
+ | |||
+ | def decodeJson[T: | ||
+ | implicit val formats = org.json4s.jackson.Serialization.formats(org.json4s.NoTypeHints) | ||
+ | return org.json4s.jackson.Serialization.read[T](src) | ||
+ | } | ||
+ | |||
+ | def main(args: Array[String]) { | ||
+ | if (args.length < 2) sys.error(" | ||
+ | val (input, output) = (args(0), args(1)) | ||
+ | |||
+ | val sc = new SparkContext() | ||
+ | sc.textFile(input) | ||
+ | .map(encodeJson).pipe(" | ||
+ | .flatMap(tokens => tokens.map((_, | ||
+ | .reduceByKey(_+_) | ||
+ | .saveAsTextFile(output) | ||
+ | sc.stop() | ||
+ | } | ||
+ | } | ||
+ | </ | ||
- | ===== Using Scala and Java ===== | + | Note that we had to use '' |
- | Scala and Java can be used in similar way as Python to communicate with Perl scripts via pipes. Nevertheless, available JSON libraries | + | After compiling '' |
+ | spark-submit --files tokenize.pl target/ | ||