[ Skip to the content ]

Institute of Formal and Applied Linguistics Wiki


[ Back to the navigation ]

This is an old revision of the document!


ICON 2009 NLP Tools Contest

Soutěž v závislostní syntaktické analýze hindštiny, bengálštiny a telugštiny. Něco jako CoNLL-X a 2007 shared task, ale pro indické jazyky. Tentokrát nezkouším jen DZ Parser, ale hlasující kombinaci tří parserů: Malt parseru, MST parseru a DZ parseru.

Indický parsing - to do:

- Převod z CSTS do CoNLL 2006 není v pořádku. Asi i proto mi vychází úspěšnost 100 %.
- Pokusit se rozchodit a natrénovat MST Parser. Pokud se to podaří, pokračovat v rozcházení hlasování 3 parserů.
- Makefile a případné další soubory specifické pro tuto úlohu přenést do některého svého repozitáře SVN.
- Zjistit, zda je Malt parser a MST parser také horší, když se mu dá morfologie, a o kolik.
- Zjistit, které rysy co znamenají. Prozkoumat, zda nepomůže přibrat do značky pád.
- Zdá se, že lemma bylo také součástí morfologické anotace a není součástí “obyčejných” ssf souborů.
- Totéž zřejmě platí o značce slovního druhu – přehlédl jsem, že v souborech ssf se opakuje značka chunku!

První výsledky DZ Parseru na vývojových datech:
hi: A 1250 - G 554 - P 0.4432
bn: A 811 - G 408 - P 0.5031
te: A 675 - G 249 - P 0.3689

Fuj!

Když jsem vynechal morfologii, tj. použil jsem pouze slovní druh, je to lepší (jednak data nejsou tak řídká, jednak morfologie byla označkovaná automaticky, tj. s chybami, zatímco slovní druhy jsou vyznačené ručně):

hi: A 1250 - G 775 - P 0.6200
bn: A 811 - G 576 - P 0.7102
te: A 675 - G 476 - P 0.7052

Malt Parser na stejné úloze:
java -Xmx2g -jar ../../../malt-1.3/malt.jar -c malt -i hindi_training.ssf.conll -m learn
java -Xmx2g -jar ../../../malt-1.3/malt.jar -c malt -i hindi_developmet.ssf.conll -o out.conll -m parse
$TOOLS/eval07.pl -g hindi_developmet.ssf.conll -s out.conll | more

hi: bez značek 0.8184 (1023/1250), se značkami 0.5520
bn: bez značek 0.8471 ( 687/ 811), se značkami 0.6042
te: bez značek 0.8089 ( 546/ 675), se značkami 0.4474

MST Parser na stejné úloze:
Přinejmenším pro hindštinu potřebuje větší paměť (-Xmx4000m stačilo, výchozích 1800 ne).

hi: bez značek 0.8032 (1004/1250), se značkami 0.5480
bn: bez značek 0.8200 ( 665/ 811), se značkami 0.6091
te: bez značek 0.7763 ( 524/ 675), se značkami 0.4667

Postřehy:
- Kvůli DZ Parseru je nutné něco udělat proti převádění velkých písmen na malá. U zvolené transliterace z indických písem totiž velikost písmen hraje roli.
- Data jsou příliš malá, takže je potřeba nějak prořezat informaci ve značkách.
- Parser, který pustím na soutěžní testovací data, bych měl určitě natrénovat na sjednocení trénovacích a vývojových dat! V tomhle množství je každá stovka vět dobrá!
- Otázka je, zda po nás organizátoři chtějí také odhadnout značky závislostí. Asi jo.
- Hindská (a pravděpodobně i ostatní) data obsahují neprojektivity, takže parsery, které to umí (Malt i MST) bych měl pouštět v neprojektivním režimu.

Otázky:
- Jaké je složení morfologických značek? Co je pád, například?
- Jaká je míra neprojektivity?
- Jaká je průměrná délka věty?
- Jak moc se jednotlivé parsery liší v odpovědích?

Úkoly:
- Uklidit si na disku, vyrobit si makefile.

Pozor!
Když volám Malt parser ze složky s daty, nenajde cestu ke svému souboru s definicemi rysů a má mnohem menší úspěšnost (s výjimkou telugštiny, kde je z nějakého důvodu úspěšnost stejná).

Hlasování parserů nad formátem CoNLL.

- Načíst větu postupně ze 3 otevřených souborů s výstupy 3 parserů.
- Už při načítání výstupy slít, takže u každého slova mám 3 odkazy na rodiče podle 3 parserů.

Současně si vybudovat i síť opačných odkazů, od rodičů k dětem.

- Abychom zajistili, že graf, který vybudujeme, bude strom, nedovolíme v každém kroku přidat libovolný uzel.

Místo toho se budeme snažit postupovat od kořene k listům.

- Budeme udržovat dvě skupiny uzlů, hotové a čekající.

Hotové uzly jsou už zařazené do stromu, čekající ještě ne.

- Na začátku je hotový pouze kořen stromu.
- U všech čekajících uzlů provést hlasování o jejich rodiči.

Každý parser disponuje tolika hlasy, jaká byla jeho úspěšnost na vývojových datech.
Vítězný rodič v tuto chvíli ještě nemusí být hotový.

- Nyní opakovaně procházet čekající uzly.

Ty, jejichž vítězný rodič už je hotový, přidat do stromu.
To celé opakovat, dokud je možné přidat nějaký čekající uzel.

- Je možné, že vítězní rodiče některých čekajících uzlů tvoří cyklus, a proto se do stromu zatím nedostaly.
- V tom případě najít uzel, u kterého napácháme nejméně škody tím, že ho pověsíme na jiného než vítězného rodiče.

(Tohle je podobný princip, jaký používá i Ryan McDonald uvnitř MST parseru, ne?)
Musí to být rodič, který je už hotový, ale při splnění této podmínky má nejvyšší možný počet hlasů.
Asi se teoreticky může stát, že žádný parser nedal hlas žádné hraně, která by zrušila cyklus, v tom případě budeme
muset prostě nějaký uzel vylosovat.
Po přidání tohoto rodiče do stromu bude možné přidat i celou jeho skupinku (cyklus).
Potom totéž postupně uděláme i s ostatními cykly.

- Paralelně je nutné ještě rozhodnout o syntaktické značce pro danou závislost.

Tady použijeme opět vážené hlasování jednotlivých parserů.
Mohli bychom výsledek také ovlivňovat tím, který parser vyhrál hlasování o zavěšení uzlu, ale to by bylo komplikované.

- Na standardní výstup vypsat větu ve formátu CoNLL, ale s novými hodnotami HEAD a DEPREL.

Porovnání úspěšností parserů nad jednotlivými jazyky:

Úspěšnost nalezení rodiče, bez syntaktické značky (Malt:MST:DZ)

hi:8184:8032:6200 1:0.98:0.76
bn:8471:8200:7102 1:0.97:0.84
te:8089:7763:7052 1:0.96:0.87

Úspěšnost přiřazení syntaktické značky (Malt:MST:DZ)

hi:5728:5824:3776 1:1.02:0.66
bn:6215:6289:5376 1:1.01:0.87
te:4904:5111:4267 1:1.04:0.87

Když použiju část informace z morfologie, DZ Parser si vede mnohem lépe! (Na hindštině asi 74% místo 62.)
:-( Bohužel se ukazuje, že to platí pouze pro hindštinu. Bengálština i telugština se výrazně zhorší.
Otázka je, jestli by si lépe vedly i Malt parser a MST parser, ale to vyzkouším až později.
Pozoruhodné je, že zhoršený DZ Parser zlepšuje výsledek hlasování, na kterém se podílí!

21:57 lrc-two:/ha/work/people/zeman/icon-parsing/work> cat hi/dtrain.conll hi/dtest.conll | $TOOLS/neproj.pl
slov = 15025
neproj = 275
podil = 0.0183028286189684
vet = 1651
neproj = 230
podil = 0.13930950938825
22:05 lrc-two:/ha/work/people/zeman/icon-parsing/work> cat bn/dtrain.conll bn/dtest.conll | $TOOLS/neproj.pl
slov = 7260
neproj = 70
podil = 0.00964187327823691
vet = 1130
neproj = 62
podil = 0.0548672566371681
22:05 lrc-two:/ha/work/people/zeman/icon-parsing/work> cat te/dtrain.conll te/dtest.conll | $TOOLS/neproj.pl
slov = 6169
neproj = 28
podil = 0.00453882314799805
vet = 1606
neproj = 21
podil = 0.0130759651307597

Předběžný pokus s neprojektivní analýzou hindštiny Malt parserem ukazuje zřetelné zhoršení:

Labeled   attachment score: 641 / 1250 * 100 = 51.28 %
Unlabeled attachment score: 947 / 1250 * 100 = 75.76 %
Label accuracy score:       685 / 1250 * 100 = 54.80 %

Nové váhy parserů při hlasování (20.10.2009 13:26, DZ parser teď na všechno používá pád a záložku, Malt parser používá POSTAG s pádem a záložkou pro hindštinu, jinde používá CPOSTAG, MST Parser používá všude POSTAG s pádem a záložkou):

unlabeled MST:MALT:DZ
hi 8616:8584:7512
bn 8570:8471:5438
te 7985:8089:4578

labels MST:MALT:DZ
hi 6816:6704:5960
bn 6967:6215:5314
te 5526:4904:4400


[ Back to the navigation ] [ Back to the content ]