[ Skip to the content ]

Institute of Formal and Applied Linguistics Wiki


[ Back to the navigation ]

This is an old revision of the document!


Table of Contents

Japanese (ja)

Tübingen Treebank of Spoken Japanese (TüBa-J/S, Verbmobil project)

Versions

The original TüBa-J/S is HPSG-oriented, there is the lexical level, the phrasal level, the clausal level, and dependency edges between nodes. The CoNLL version contains only the dependency relations.

Obtaining and License

To obtain the treebank, download the license agreement, print it, fill it out and sign it, scan and send it back to Kathrin Beck (kbeck (at) sfs (dot) uni-tuebingen (dot) de). She will send you the password for the download page. The license in short:

TüBa-J/S was created in the Verbmobil project by members of the Seminar für Sprachwissenschaft, Eberhard Karls Universität Tübingen, Wilhelmstrasse 19, D-72074 Tübingen, Germany.

References

Domain

Spoken dialogues, negotiations about time and place of business meetings. That is why many sentences are relatively short (a frequent single-word sentence is hai = “yes”).

Size

The CoNLL 2006 version contains 157,172 tokens in 17753 sentences, yielding 8.85 tokens per sentence on average (CoNLL 2006 data split: 151,461 tokens / 17044 sentences training, 5711 tokens / 709 sentences test).

Inside

The original morphosyntactic tags have been converted to fit into the three columns (CPOS, POS and FEAT) of the CoNLL format. There should be a 1-1 mapping between the DDT positional tags and the CoNLL 2006 annotation. Use DZ Interset to inspect the CoNLL tagset.

The morphological analysis in the CoNLL 2006 version does not include lemmas (the original DTAG version does contain them). The morphosyntactic tags have been assigned (probably) manually.

Some multi-word expressions have been collapsed into one token, using underscore as the joining character. This includes adverbially used prepositional phrases (e.g. i_lørdags = on Saturdays) but not named entities.

Sample

The first sentence of DDT 1.0 in the DTAG format:

<tei.2>
  <teiHeader type=text>
    <fileDesc>
      <titleStmt>
        <title>Tagged sample of: 'Jeltsins skæbnetime'</title>
      </titleStmt>
      <extent words=158>158 running words</extent>
      <publicationStmt>
         <distributor>PAROLE-DK</distributor>
         <address><addrline>Christians Brygge 1,1., DK-1219 Copenhagen K.</address>
         <date>1998-06-02</date>
         <availability status=restricted><p>by agreement with distributor</availability>
      </publicationStmt>
      <sourceDesc>
        <biblStruct>
          <analytic>
            <title>Jeltsins skæbnetime</title>
            <author gender=m born=1925>Nikulin, Leon</author>
          </analytic>
          <monogr>
            <imprint><pubPlace>Denmark</pubPlace>
              <publisher>Det Fri Aktuelt</publisher>
              <date>1992-12-01</date>
            </imprint>
          </monogr>
        </biblStruct>
      </sourceDesc>
    </fileDesc>
    <profileDesc>
      <creation>1992-12-01</creation>
      <langUsage><language>Danish</langUsage>
      <textClass>
        <catRef target="P.M2">
        <catRef target="P.G4.8">
        <catRef target="P.T9.3">
      </textClass>
    </profileDesc>
  </teiHeader>
<text id=AJK>
<body>
<div1 type=main>
<p>
<s>
<W lemma="to" msd="AC---U=--" in="9:subj" out="1:mod|2:mod|3:nobj|5:appr">To</W>
<W lemma="kendt" msd="ANP[CN]PU=[DI]U" in="-1:mod" out="">kendte</W>
<W lemma="russisk" msd="ANP[CN]PU=[DI]U" in="-2:mod" out="">russiske</W>
<W lemma="historiker" msd="NCCPU==I" in="-3:nobj" out="">historikere</W>
<W lemma="Andronik" msd="NP--U==-" in="1:namef" out="">Andronik</W>
<W lemma="Mirganjan" msd="NP--U==-" in="-5:appr" out="-1:namef|1:coord">Mirganjan</W>
<W lemma="og" msd="CC" in="-1:coord" out="2:conj">og</W>
<W lemma="Igor" msd="NP--U==-" in="1:namef" out="">Igor</W>
<W lemma="Klamkin" msd="NP--U==-" in="-2:conj" out="-1:namef">Klamkin</W>
<W lemma="tro" msd="VADR=----A-" in="" out="-9:subj|1:mod|2:pnct|3:dobj|12:pnct">tror</W>
<W lemma="ikke" msd="RGU" in="-1:mod" out="">ikke</W>
<W lemma="," msd="XP" in="-2:pnct" out="">,</W>
<W lemma="at" msd="CS" in="-3:dobj" out="2:vobj">at</W>
<W lemma="Rusland" msd="NP--U==-" in="1:subj|2:[subj]" out="">Rusland</W>
<W lemma="kunne" msd="VADR=----A-" in="-2:vobj" out="-1:subj|1:vobj|2:mod">kan</W>
<W lemma="udvikle" msd="VAF-=----P-" in="-1:vobj" out="-2:[subj]">udvikles</W>
<W lemma="uden" msd="SP" in="-2:mod" out="1:nobj">uden</W>
<W lemma="en" msd="PI-CSU--U" in="-1:nobj" out="2:nobj">en</W>
<W lemma="&quot;" msd="XP" in="1:pnct" out="">"</W>
<W lemma="jernnæve" msd="NCCSU==I" in="-2:nobj" out="-1:pnct|1:pnct">jernnæve</W>
<W lemma="&quot;" msd="XP" in="-1:pnct" out="">"</W>
<W lemma="." msd="XP" in="-12:pnct" out="">.</W>
</s>

The first sentence of the CoNLL 2006 training data:

1 Samme _ A AN degree=pos|gender=common/neuter|number=sing/plur|case=unmarked|def=def/indef|transcat=unmarked 0 ROOT _ _
2 cifre _ N NC gender=neuter|number=plur|case=unmarked|def=indef 1 nobj _ _
3 , _ X XP _ 1 pnct _ _
4 de _ P PD gender=common/neuter|number=plur|case=unmarked|register=unmarked 7 subj _ _
5 norske _ A AN degree=pos|gender=common/neuter|number=plur|case=unmarked|def=def/indef|transcat=unmarked 4 mod _ _
6 piger _ N NC gender=common|number=plur|case=unmarked|def=indef 4 nobj _ _
7 tabte _ V VA mood=indic|tense=past|voice=active 1 rel _ _
8 med _ SP SP _ 7 pobj _ _
9 i_lørdags _ RG RG degree=unmarked 7 mod _ _
10 mod _ SP SP _ 7 pobj _ _
11 VMs _ N NP case=gen 10 nobj _ _
12 værtsnation _ N NC gender=common|number=sing|case=unmarked|def=indef 11 possd _ _
13 . _ X XP _ 1 pnct _ _

The first sentence of the CoNLL 2006 test data:

1 To _ A AC case=unmarked 10 subj _ _
2 kendte _ A AN degree=pos|gender=common/neuter|number=plur|case=unmarked|def=def/indef|transcat=unmarked 1 mod _ _
3 russiske _ A AN degree=pos|gender=common/neuter|number=plur|case=unmarked|def=def/indef|transcat=unmarked 1 mod _ _
4 historikere _ N NC gender=common|number=plur|case=unmarked|def=indef 1 nobj _ _
5 Andronik _ N NP case=unmarked 6 namef _ _
6 Mirganjan _ N NP case=unmarked 1 appr _ _
7 og _ C CC _ 6 coord _ _
8 Igor _ N NP case=unmarked 9 namef _ _
9 Klamkin _ N NP case=unmarked 7 conj _ _
10 tror _ V VA mood=indic|tense=present|voice=active 0 ROOT _ _
11 ikke _ RG RG degree=unmarked 10 mod _ _
12 , _ X XP _ 10 pnct _ _
13 at _ C CS _ 10 dobj _ _
14 Rusland _ N NP case=unmarked 15 subj _ _
15 kan _ V VA mood=indic|tense=present|voice=active 13 vobj _ _
16 udvikles _ V VA mood=infin|voice=passive 15 vobj _ _
17 uden _ SP SP _ 15 mod _ _
18 en _ P PI gender=common|number=sing|case=unmarked|register=unmarked 17 nobj _ _
19 _ X XP _ 20 pnct _ _
20 jernnæve _ N NC gender=common|number=sing|case=unmarked|def=indef 18 nobj _ _
21 _ X XP _ 20 pnct _ _
22 . _ X XP _ 10 pnct _ _

Parsing

Nonprojectivities in DDT are not frequent. Only 988 of the 100,238 tokens in the CoNLL 2006 version are attached nonprojectively (0.99%).

The results of the CoNLL 2006 shared task are available online. They have been published in (Buchholz and Marsi, 2006). The evaluation procedure was non-standard because it excluded punctuation tokens. These are the best results for Danish:

Parser (Authors) LAS UAS
MST (McDonald et al.) 84.79 90.58
Malt (Nivre et al.) 84.77 89.80
Riedel et al. 83.63 89.66

[ Back to the navigation ] [ Back to the content ]